IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46066-5.html
   My bibliography  Save this article

Single-pixel p-graded-n junction spectrometers

Author

Listed:
  • Jingyi Wang

    (ShanghaiTech University
    Shanghai Engineering Research Center of Energy Efficient and Custom AI IC)

  • Beibei Pan

    (ShanghaiTech University
    Shanghai Engineering Research Center of Energy Efficient and Custom AI IC)

  • Zi Wang

    (ShanghaiTech University
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiakai Zhang

    (ShanghaiTech University)

  • Zhiqi Zhou

    (ShanghaiTech University
    Shanghai Engineering Research Center of Energy Efficient and Custom AI IC)

  • Lu Yao

    (ShanghaiTech University
    Shanghai Engineering Research Center of Energy Efficient and Custom AI IC)

  • Yanan Wu

    (ShanghaiTech University)

  • Wuwei Ren

    (ShanghaiTech University)

  • Jianyu Wang

    (ShanghaiTech University
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Haiming Ji

    (University of Chinese Academy of Sciences)

  • Jingyi Yu

    (ShanghaiTech University)

  • Baile Chen

    (ShanghaiTech University
    Shanghai Engineering Research Center of Energy Efficient and Custom AI IC)

Abstract

Ultra-compact spectrometers are becoming increasingly popular for their promising applications in biomedical analysis, environmental monitoring, and food safety. In this work, we report a single-pixel-photodetector spectrometer with a spectral range from 480 nm to 820 nm, based on the AlGaAs/GaAs p-graded-n junction with a voltage-tunable optical response. To reconstruct the optical spectrum, we propose a tailored method called Neural Spectral Fields (NSF) that leverages the unique wavelength and bias-dependent responsivity matrix. Our spectrometer achieves a high spectral wavelength accuracy of up to 0.30 nm and a spectral resolution of up to 10 nm. Additionally, we demonstrate the high spectral imaging performance of the device. The compatibility of our demonstration with the standard III-V process greatly accelerates the commercialization of miniaturized spectrometers.

Suggested Citation

  • Jingyi Wang & Beibei Pan & Zi Wang & Jiakai Zhang & Zhiqi Zhou & Lu Yao & Yanan Wu & Wuwei Ren & Jianyu Wang & Haiming Ji & Jingyi Yu & Baile Chen, 2024. "Single-pixel p-graded-n junction spectrometers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46066-5
    DOI: 10.1038/s41467-024-46066-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46066-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46066-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenjie Deng & Zilong Zheng & Jingzhen Li & Rongkun Zhou & Xiaoqing Chen & Dehui Zhang & Yue Lu & Chongwu Wang & Congya You & Songyu Li & Ling Sun & Yi Wu & Xuhong Li & Boxing An & Zheng Liu & Qi jie W, 2022. "Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Zhu Wang & Soongyu Yi & Ang Chen & Ming Zhou & Ting Shan Luk & Anthony James & John Nogan & Willard Ross & Graham Joe & Alireza Shahsafi & Ken Xingze Wang & Mikhail A. Kats & Zongfu Yu, 2019. "Single-shot on-chip spectral sensors based on photonic crystal slabs," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    3. S. N. Zheng & J. Zou & H. Cai & J. F. Song & L. K. Chin & P. Y. Liu & Z. P. Lin & D. L. Kwong & A. Q. Liu, 2019. "Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Jie Bao & Moungi G. Bawendi, 2015. "A colloidal quantum dot spectrometer," Nature, Nature, vol. 523(7558), pages 67-70, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gang Wu & Mohamed Abid & Mohamed Zerara & Jiung Cho & Miri Choi & Cormac Ó Coileáin & Kuan-Ming Hung & Ching-Ray Chang & Igor V. Shvets & Han-Chun Wu, 2024. "Miniaturized spectrometer with intrinsic long-term image memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Wenjie Deng & Zilong Zheng & Jingzhen Li & Rongkun Zhou & Xiaoqing Chen & Dehui Zhang & Yue Lu & Chongwu Wang & Congya You & Songyu Li & Ling Sun & Yi Wu & Xuhong Li & Boxing An & Zheng Liu & Qi jie W, 2022. "Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Md Gius Uddin & Susobhan Das & Abde Mayeen Shafi & Lei Wang & Xiaoqi Cui & Fedor Nigmatulin & Faisal Ahmed & Andreas C. Liapis & Weiwei Cai & Zongyin Yang & Harri Lipsanen & Tawfique Hasan & Hoon Hahn, 2024. "Broadband miniaturized spectrometers with a van der Waals tunnel diode," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Dylan Tua & Ruiying Liu & Wenhong Yang & Lyu Zhou & Haomin Song & Leslie Ying & Qiaoqiang Gan, 2023. "Imaging-based intelligent spectrometer on a plasmonic rainbow chip," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Dohyun Kwak & Dmitry K. Polyushkin & Thomas Mueller, 2023. "In-sensor computing using a MoS2 photodetector with programmable spectral responsivity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Soongyu Yi & Jin Xiang & Ming Zhou & Zhicheng Wu & Lan Yang & Zongfu Yu, 2021. "Angle-based wavefront sensing enabled by the near fields of flat optics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Xia Hua & Yujie Wang & Shuming Wang & Xiujuan Zou & You Zhou & Lin Li & Feng Yan & Xun Cao & Shumin Xiao & Din Ping Tsai & Jiecai Han & Zhenlin Wang & Shining Zhu, 2022. "Ultra-compact snapshot spectral light-field imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Un Jeong Kim & Suyeon Lee & Hyochul Kim & Yeongeun Roh & Seungju Han & Hojung Kim & Yeonsang Park & Seokin Kim & Myung Jin Chung & Hyungbin Son & Hyuck Choo, 2023. "Drug classification with a spectral barcode obtained with a smartphone Raman spectrometer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Zicheng Shen & Feng Zhao & Chunqi Jin & Shuai Wang & Liangcai Cao & Yuanmu Yang, 2023. "Monocular metasurface camera for passive single-shot 4D imaging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Weihang Zhang & Jinli Suo & Kaiming Dong & Lianglong Li & Xin Yuan & Chengquan Pei & Qionghai Dai, 2023. "Handheld snapshot multi-spectral camera at tens-of-megapixel resolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Hongnan Xu & Yue Qin & Gaolei Hu & Hon Ki Tsang, 2024. "Scalable integrated two-dimensional Fourier-transform spectrometry," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Yibo Xu & Liyang Lu & Vishwanath Saragadam & Kevin F. Kelly, 2024. "A compressive hyperspectral video imaging system using a single-pixel detector," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Xiaopeng Feng & Chenglong Li & Jinmei Song & Yuhong He & Wei Qu & Weijun Li & Keke Guo & Lulu Liu & Bai Yang & Haotong Wei, 2024. "Differential perovskite hemispherical photodetector for intelligent imaging and location tracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46066-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.