IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44981-1.html
   My bibliography  Save this article

Efficient, narrow-band, and stable electroluminescence from organoboron-nitrogen-carbonyl emitter

Author

Listed:
  • Ying-Chun Cheng

    (Soochow University)

  • Xun Tang

    (Kyushu University)

  • Kai Wang

    (Soochow University
    Soochow University)

  • Xin Xiong

    (Soochow University)

  • Xiao-Chun Fan

    (Soochow University)

  • Shulin Luo

    (Soochow University)

  • Rajat Walia

    (Soochow University)

  • Yue Xie

    (Soochow University)

  • Tao Zhang

    (Soochow University)

  • Dandan Zhang

    (Soochow University)

  • Jia Yu

    (Soochow University
    Soochow University)

  • Xian-Kai Chen

    (Soochow University)

  • Chihaya Adachi

    (Kyushu University
    Kyushu University)

  • Xiao-Hong Zhang

    (Soochow University
    Soochow University)

Abstract

Organic light-emitting diodes (OLEDs) exploiting simple binary emissive layers (EMLs) blending only emitters and hosts have natural advantages in low-cost commercialization. However, previously reported OLEDs based on binary EMLs hardly simultaneously achieved desired comprehensive performances, e.g., high efficiency, low efficiency roll-off, narrow emission bands, and high operation stability. Here, we report a molecular-design strategy. Such a strategy leads to a fast reverse intersystem crossing rate in our designed emitter h-BNCO-1 of 1.79×105 s−1. An OLED exploiting a binary EML with h-BNCO-1 achieves ultrapure emission, a maximum external quantum efficiency of over 40% and a mild roll-off of 14% at 1000 cd·m−2. Moreover, h-BNCO-1 also exhibits promising operational stability in an alternative OLED exploiting a compact binary EML (the lifetime reaching 95% of the initial luminance at 1000 cd m−2 is ~ 137 h). Here, our work has thus provided a molecular-design strategy for OLEDs with promising comprehensive performance.

Suggested Citation

  • Ying-Chun Cheng & Xun Tang & Kai Wang & Xin Xiong & Xiao-Chun Fan & Shulin Luo & Rajat Walia & Yue Xie & Tao Zhang & Dandan Zhang & Jia Yu & Xian-Kai Chen & Chihaya Adachi & Xiao-Hong Zhang, 2024. "Efficient, narrow-band, and stable electroluminescence from organoboron-nitrogen-carbonyl emitter," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44981-1
    DOI: 10.1038/s41467-024-44981-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44981-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44981-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anton Pershin & David Hall & Vincent Lemaur & Juan-Carlos Sancho-Garcia & Luca Muccioli & Eli Zysman-Colman & David Beljonne & Yoann Olivier, 2019. "Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules," Nature Communications, Nature, vol. 10(1), pages 1-5, December.
    2. Hiroki Uoyama & Kenichi Goushi & Katsuyuki Shizu & Hiroko Nomura & Chihaya Adachi, 2012. "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature, Nature, vol. 492(7428), pages 234-238, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianyu Zhang & Yujie Tu & Hanchen Shen & Jacky W. Y. Lam & Jianwei Sun & Haoke Zhang & Ben Zhong Tang, 2023. "Regulating the proximity effect of heterocycle-containing AIEgens," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Dimitris A. Chalkias & Christos Charalampopoulos & Stefania Aivali & Aikaterini K. Andreopoulou & Aggeliki Karavioti & Elias Stathatos, 2021. "A Di-Carbazole-Based Dye as a Potential Sensitizer for Greenhouse-Integrated Dye-Sensitized Solar Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
    3. Junyuan Liu & Yunhui Zhu & Taiju Tsuboi & Chao Deng & Weiwei Lou & Dan Wang & Tiangeng Liu & Qisheng Zhang, 2022. "Toward a BT.2020 green emitter through a combined multiple resonance effect and multi-lock strategy," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Pode, Ramchandra, 2020. "Organic light emitting diode devices: An energy efficient solid state lighting for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Alexander J. Gillett & Claire Tonnelé & Giacomo Londi & Gaetano Ricci & Manon Catherin & Darcy M. L. Unson & David Casanova & Frédéric Castet & Yoann Olivier & Weimin M. Chen & Elena Zaborova & Emrys , 2021. "Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Junki Ochi & Yuki Yamasaki & Kojiro Tanaka & Yasuhiro Kondo & Kohei Isayama & Susumu Oda & Masakazu Kondo & Takuji Hatakeyama, 2024. "Highly efficient multi-resonance thermally activated delayed fluorescence material toward a BT.2020 deep-blue emitter," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44981-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.