IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44873-4.html
   My bibliography  Save this article

Bispecific BCMA/CD24 CAR-T cells control multiple myeloma growth

Author

Listed:
  • Fumou Sun

    (University of Arkansas for Medical Sciences)

  • Yan Cheng

    (University of Arkansas for Medical Sciences)

  • Visanu Wanchai

    (University of Arkansas for Medical Sciences)

  • Wancheng Guo

    (University of Arkansas for Medical Sciences)

  • David Mery

    (University of Arkansas for Medical Sciences)

  • Hongwei Xu

    (University of Arkansas for Medical Sciences)

  • Dongzheng Gai

    (University of Arkansas for Medical Sciences)

  • Eric Siegel

    (University of Arkansas for Medical Sciences)

  • Clyde Bailey

    (University of Arkansas for Medical Sciences)

  • Cody Ashby

    (University of Arkansas for Medical Sciences)

  • Samer Al Hadidi

    (University of Arkansas for Medical Sciences)

  • Carolina Schinke

    (University of Arkansas for Medical Sciences)

  • Sharmilan Thanendrarajan

    (University of Arkansas for Medical Sciences)

  • Yupo Ma

    (Research & Development Division)

  • Qing Yi

    (Houston Methodist Cancer Center, Houston Methodist Research Institute)

  • Robert Z. Orlowski

    (The University of Texas MD Anderson Cancer Center)

  • Maurizio Zangari

    (University of Arkansas for Medical Sciences)

  • Frits van Rhee

    (University of Arkansas for Medical Sciences)

  • Siegfried Janz

    (Medical College of Wisconsin)

  • Gail Bishop

    (University of Iowa and VA Medical Center)

  • Guido Tricot

    (University of Arkansas for Medical Sciences)

  • John D. Shaughnessy

    (University of Arkansas for Medical Sciences)

  • Fenghuang Zhan

    (University of Arkansas for Medical Sciences)

Abstract

Anti-multiple myeloma B cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T-cell therapies represent a promising treatment strategy with high response rates in myeloma. However, durable cures following anti-BCMA CAR-T cell treatment of myeloma are rare. One potential reason is that a small subset of minimal residual myeloma cells seeds relapse. Residual myeloma cells following BCMA-CAR-T-mediated treatment show less-differentiated features and express stem-like genes, including CD24. CD24-positive myeloma cells represent a large fraction of residual myeloma cells after BCMA-CAR-T therapy. In this work, we develop CD24-CAR-T cells and test their ability to eliminate myeloma cells. We find that CD24-CAR-T cells block the CD24-Siglec-10 pathway, thereby enhancing macrophage phagocytic clearance of myeloma cells. Additionally, CD24-CAR-T cells polarize macrophages to a M1-like phenotype. A dual-targeted BCMA-CD24-CAR-T exhibits improved efficacy compared to monospecific BCMA-CAR-T-cell therapy. This work presents an immunotherapeutic approach that targets myeloma cells and promotes tumor cell clearance by macrophages.

Suggested Citation

  • Fumou Sun & Yan Cheng & Visanu Wanchai & Wancheng Guo & David Mery & Hongwei Xu & Dongzheng Gai & Eric Siegel & Clyde Bailey & Cody Ashby & Samer Al Hadidi & Carolina Schinke & Sharmilan Thanendraraja, 2024. "Bispecific BCMA/CD24 CAR-T cells control multiple myeloma growth," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44873-4
    DOI: 10.1038/s41467-024-44873-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44873-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44873-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mehmet Kemal Samur & Mariateresa Fulciniti & Anil Aktas Samur & Abdul Hamid Bazarbachi & Yu-Tzu Tai & Rao Prabhala & Alejandro Alonso & Adam S. Sperling & Timothy Campbell & Fabio Petrocca & Kristen H, 2021. "Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Amira A. Barkal & Rachel E. Brewer & Maxim Markovic & Mark Kowarsky & Sammy A. Barkal & Balyn W. Zaro & Venkatesh Krishnan & Jason Hatakeyama & Oliver Dorigo & Layla J. Barkal & Irving L. Weissman, 2019. "CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy," Nature, Nature, vol. 572(7769), pages 392-396, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Wei Chou & Chia-Nung Hung & Cheryl Hsiang-Ling Chiu & Xi Tan & Meizhen Chen & Chien-Chin Chen & Moawiz Saeed & Che-Wei Hsu & Michael A. Liss & Chiou-Miin Wang & Zhao Lai & Nathaniel Alvarez & Paw, 2023. "Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Han Luo & Xuyang Xia & Li-Bin Huang & Hyunsu An & Minyuan Cao & Gyeong Dae Kim & Hai-Ning Chen & Wei-Han Zhang & Yang Shu & Xiangyu Kong & Zhixiang Ren & Pei-Heng Li & Yang Liu & Huairong Tang & Rongh, 2022. "Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Shiqun Wang & Wei Yan & Lingkai Kong & Shuguang Zuo & Jingyi Wu & Chunxiao Zhu & Huaping Huang & Bohao He & Jie Dong & Jiwu Wei, 2023. "Oncolytic viruses engineered to enforce cholesterol efflux restore tumor-associated macrophage phagocytosis and anti-tumor immunity in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Marco Bolis & Daniela Bossi & Arianna Vallerga & Valentina Ceserani & Manuela Cavalli & Daniela Impellizzieri & Laura Di Rito & Eugenio Zoni & Simone Mosole & Angela Rita Elia & Andrea Rinaldi & Ricar, 2021. "Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Ani Chi & Bicheng Yang & Hao Dai & Xinyu Li & Jiahui Mo & Yong Gao & Zhihong Chen & Xin Feng & Menghui Ma & Yanqing Li & Chao Yang & Jie Liu & Hanchao Liu & Zhenqing Wang & Feng Gao & Yan Liao & Xueta, 2024. "Stem Leydig cells support macrophage immunological homeostasis through mitochondrial transfer in mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. E. H. Puttock & E. J. Tyler & M. Manni & E. Maniati & C. Butterworth & M. Burger Ramos & E. Peerani & P. Hirani & V. Gauthier & Y. Liu & G. Maniscalco & V. Rajeeve & P. Cutillas & C. Trevisan & M. Poz, 2023. "Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Frank Cichocki & Ryan Bjordahl & Jodie P. Goodridge & Sajid Mahmood & Svetlana Gaidarova & Ramzey Abujarour & Zachary B. Davis & Aimee Merino & Katie Tuininga & Hongbo Wang & Akhilesh Kumar & Brian Gr, 2022. "Quadruple gene-engineered natural killer cells enable multi-antigen targeting for durable antitumor activity against multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Dongpeng Jiang & Haiwen Huang & Huimin Qin & Koukou Tang & Xiangru Shi & Tingting Zhu & Yuqing Gao & Ying Zhang & Xiaopeng Tian & Jianhong Fu & Weiwei Qu & Weilan Cai & Yang Xu & Depei Wu & Jianhong C, 2023. "Chimeric antigen receptor T cells targeting FcRH5 provide robust tumour-specific responses in murine xenograft models of multiple myeloma," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Maximilian Merz & Almuth Maria Anni Merz & Jie Wang & Lei Wei & Qiang Hu & Nicholas Hutson & Cherie Rondeau & Kimberly Celotto & Ahmed Belal & Ronald Alberico & AnneMarie W. Block & Hemn Mohammadpour , 2022. "Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Awatef Allouch & Laurent Voisin & Yanyan Zhang & Syed Qasim Raza & Yann Lecluse & Julien Calvo & Dorothée Selimoglu-Buet & Stéphane Botton & Fawzia Louache & Françoise Pflumio & Eric Solary & Jean-Luc, 2022. "CDKN1A is a target for phagocytosis-mediated cellular immunotherapy in acute leukemia," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44873-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.