IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44757-7.html
   My bibliography  Save this article

SiFT: uncovering hidden biological processes by probabilistic filtering of single-cell data

Author

Listed:
  • Zoe Piran

    (The Hebrew University)

  • Mor Nitzan

    (The Hebrew University
    The Hebrew University
    The Hebrew University)

Abstract

Cellular populations simultaneously encode multiple biological attributes, including spatial configuration, temporal trajectories, and cell-cell interactions. Some of these signals may be overshadowed by others and harder to recover, despite the great progress made to computationally reconstruct biological processes from single-cell data. To address this, we present SiFT, a kernel-based projection method for filtering biological signals in single-cell data, thus uncovering underlying biological processes. SiFT applies to a wide range of tasks, from the removal of unwanted variation in the data to revealing hidden biological structures. We demonstrate how SiFT enhances the liver circadian signal by filtering spatial zonation, recovers regenerative cell subpopulations in spatially-resolved liver data, and exposes COVID-19 disease-related cells, pathways, and dynamics by filtering healthy reference signals. SiFT performs the correction at the gene expression level, can scale to large datasets, and compares favorably to state-of-the-art methods.

Suggested Citation

  • Zoe Piran & Mor Nitzan, 2024. "SiFT: uncovering hidden biological processes by probabilistic filtering of single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44757-7
    DOI: 10.1038/s41467-024-44757-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44757-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44757-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keren Bahar Halpern & Rom Shenhav & Orit Matcovitch-Natan & Beáta Tóth & Doron Lemze & Matan Golan & Efi E. Massasa & Shaked Baydatch & Shanie Landen & Andreas E. Moor & Alexander Brandis & Amir Gilad, 2017. "Single-cell spatial reconstruction reveals global division of labour in the mammalian liver," Nature, Nature, vol. 542(7641), pages 352-356, February.
    2. Shaoheng Liang & Fang Wang & Jincheng Han & Ken Chen, 2020. "Latent periodic process inference from single-cell RNA-seq data," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Keren Bahar Halpern & Rom Shenhav & Orit Matcovitch-Natan & Beáta Tóth & Doron Lemze & Matan Golan & Efi E. Massasa & Shaked Baydatch & Shanie Landen & Andreas E. Moor & Alexander Brandis & Amir Gilad, 2017. "Erratum: Single-cell spatial reconstruction reveals global division of labour in the mammalian liver," Nature, Nature, vol. 543(7647), pages 742-742, March.
    4. Daniel Dimitrov & Dénes Türei & Martin Garrido-Rodriguez & Paul L. Burmedi & James S. Nagai & Charlotte Boys & Ricardo O. Ramirez Flores & Hyojin Kim & Bence Szalai & Ivan G. Costa & Alberto Valdeoliv, 2022. "Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Mor Nitzan & Nikos Karaiskos & Nir Friedman & Nikolaus Rajewsky, 2019. "Gene expression cartography," Nature, Nature, vol. 576(7785), pages 132-137, December.
    6. Hailun Zhu & Sihai Dave Zhao & Alokananda Ray & Yu Zhang & Xin Li, 2022. "A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Manuel Neumann & Xiaocai Xu & Cezary Smaczniak & Julia Schumacher & Wenhao Yan & Nils Blüthgen & Thomas Greb & Henrik Jönsson & Jan Traas & Kerstin Kaufmann & Jose M. Muino, 2022. "A 3D gene expression atlas of the floral meristem based on spatial reconstruction of single nucleus RNA sequencing data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Franziska Hildebrandt & Alma Andersson & Sami Saarenpää & Ludvig Larsson & Noémi Van Hul & Sachie Kanatani & Jan Masek & Ewa Ellis & Antonio Barragan & Annelie Mollbrink & Emma R. Andersson & Joakim L, 2021. "Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Ana Belén Plata-Gómez & Lucía Prado-Rivas & Alba Sanz & Nerea Deleyto-Seldas & Fernando García & Celia Calle Arregui & Camila Silva & Eduardo Caleiras & Osvaldo Graña-Castro & Elena Piñeiro-Yáñez & Jo, 2024. "Hepatic nutrient and hormone signaling to mTORC1 instructs the postnatal metabolic zonation of the liver," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Kristina Handler & Karsten Bach & Costanza Borrelli & Salvatore Piscuoglio & Xenia Ficht & Ilhan E. Acar & Andreas E. Moor, 2023. "Fragment-sequencing unveils local tissue microenvironments at single-cell resolution," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Inmaculada Ruz-Maldonado & John T. Gonzalez & Hanming Zhang & Jonathan Sun & Alicia Bort & Inamul Kabir & Richard G. Kibbey & Yajaira Suárez & Daniel M. Greif & Carlos Fernández-Hernando, 2024. "Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Sun Woo Sophie Kang & Rory P. Cunningham & Colin B. Miller & Lauryn A. Brown & Constance M. Cultraro & Adam Harned & Kedar Narayan & Jonathan Hernandez & Lisa M. Jenkins & Alexei Lobanov & Maggie Cam , 2024. "A spatial map of hepatic mitochondria uncovers functional heterogeneity shaped by nutrient-sensing signaling," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Jie Fang & Shivendra Singh & Changde Cheng & Sivaraman Natarajan & Heather Sheppard & Ahmed Abu-Zaid & Adam D. Durbin & Ha Won Lee & Qiong Wu & Jacob Steele & Jon P. Connelly & Hongjian Jin & Wenan Ch, 2023. "Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
    10. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Yuan Guan & Annika Enejder & Meiyue Wang & Zhuoqing Fang & Lu Cui & Shih-Yu Chen & Jingxiao Wang & Yalun Tan & Manhong Wu & Xinyu Chen & Patrik K. Johansson & Issra Osman & Koshi Kunimoto & Pierre Rus, 2021. "A human multi-lineage hepatic organoid model for liver fibrosis," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    12. Francesca Lazzeri-Barcelo & Nuria Oliva-Vilarnau & Marion Baniol & Barbara Leibiger & Olaf Bergmann & Volker M. Lauschke & Ingo B. Leibiger & Noah Moruzzi & Per-Olof Berggren, 2024. "Intraocular liver spheroids for non-invasive high-resolution in vivo monitoring of liver cell function," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. David R. Ghasemi & Konstantin Okonechnikov & Anne Rademacher & Stephan Tirier & Kendra K. Maass & Hanna Schumacher & Piyush Joshi & Maxwell P. Gold & Julia Sundheimer & Britta Statz & Ahmet S. Rifaiog, 2024. "Compartments in medulloblastoma with extensive nodularity are connected through differentiation along the granular precursor lineage," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Md Tauhidul Islam & Jen-Yeu Wang & Hongyi Ren & Xiaomeng Li & Masoud Badiei Khuzani & Shengtian Sang & Lequan Yu & Liyue Shen & Wei Zhao & Lei Xing, 2022. "Leveraging data-driven self-consistency for high-fidelity gene expression recovery," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Andrea Riba & Attila Oravecz & Matej Durik & Sara Jiménez & Violaine Alunni & Marie Cerciat & Matthieu Jung & Céline Keime & William M. Keyes & Nacho Molina, 2022. "Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Zhiyuan Liu & Dafei Wu & Weiwei Zhai & Liang Ma, 2023. "SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Kai Cao & Qiyu Gong & Yiguang Hong & Lin Wan, 2022. "A unified computational framework for single-cell data integration with optimal transport," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Benjamin J. Auerbach & Garret A. FitzGerald & Mingyao Li, 2022. "Tempo: an unsupervised Bayesian algorithm for circadian phase inference in single-cell transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. E. Koncina & M. Nurmik & V. I. Pozdeev & C. Gilson & M. Tsenkova & R. Begaj & S. Stang & A. Gaigneaux & C. Weindorfer & F. Rodriguez & M. Schmoetten & E. Klein & J. Karta & V. S. Atanasova & K. Grzyb , 2023. "IL1R1+ cancer-associated fibroblasts drive tumor development and immunosuppression in colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Maša Alečković & Simona Cristea & Carlos R. Gil Del Alcazar & Pengze Yan & Lina Ding & Ethan D. Krop & Nicholas W. Harper & Ernesto Rojas Jimenez & Donghao Lu & Anushree C. Gulvady & Pierre Foidart & , 2022. "Breast cancer prevention by short-term inhibition of TGFβ signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44757-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.