IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44735-z.html
   My bibliography  Save this article

Wide-range soft anisotropic thermistor with a direct wireless radio frequency interface

Author

Listed:
  • Mahmoud Wagih

    (University of Glasgow, James Watt School of Engineering)

  • Junjie Shi

    (University of Southampton, School of Electronics and Computer Science
    PragmatIC Semiconductor Ltd.)

  • Menglong Li

    (University of Southampton, School of Electronics and Computer Science)

  • Abiodun Komolafe

    (University of Southampton, School of Electronics and Computer Science)

  • Thomas Whittaker

    (Loughborough University, Wolfson School of Mechanical, Electrical, and Manufacturing Engineering)

  • Johannes Schneider

    (University of Glasgow, James Watt School of Engineering)

  • Shanmugam Kumar

    (University of Glasgow, James Watt School of Engineering)

  • William Whittow

    (Loughborough University, Wolfson School of Mechanical, Electrical, and Manufacturing Engineering)

  • Steve Beeby

    (University of Southampton, School of Electronics and Computer Science)

Abstract

Temperature sensors are one of the most fundamental sensors and are found in industrial, environmental, and biomedical applications. The traditional approach of reading the resistive response of Positive Temperature Coefficient thermistors at DC hindered their adoption as wide-range temperature sensors. Here, we present a large-area thermistor, based on a flexible and stretchable short carbon fibre incorporated Polydimethylsiloxane composite, enabled by a radio frequency sensing interface. The radio frequency readout overcomes the decades-old sensing range limit of thermistors. The composite exhibits a resistance sensitivity over 1000 °C−1, while maintaining stability against bending (20,000 cycles) and stretching (1000 cycles). Leveraging its large-area processing, the anisotropic composite is used as a substrate for sub-6 GHz radio frequency components, where the thermistor-based microwave resonators achieve a wide temperature sensing range (30 to 205 °C) compared to reported flexible temperature sensors, and high sensitivity (3.2 MHz/°C) compared to radio frequency temperature sensors. Wireless sensing is demonstrated using a microstrip patch antenna based on a thermistor substrate, and a battery-less radio frequency identification tag. This radio frequency-based sensor readout technique could enable functional materials to be directly integrated in wireless sensing applications.

Suggested Citation

  • Mahmoud Wagih & Junjie Shi & Menglong Li & Abiodun Komolafe & Thomas Whittaker & Johannes Schneider & Shanmugam Kumar & William Whittow & Steve Beeby, 2024. "Wide-range soft anisotropic thermistor with a direct wireless radio frequency interface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44735-z
    DOI: 10.1038/s41467-024-44735-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44735-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44735-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hira Hameed & Muhammad Usman & Ahsen Tahir & Amir Hussain & Hasan Abbas & Tie Jun Cui & Muhammad Ali Imran & Qammer H. Abbasi, 2022. "Pushing the limits of remote RF sensing by reading lips under the face mask," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Qilin Hua & Junlu Sun & Haitao Liu & Rongrong Bao & Ruomeng Yu & Junyi Zhai & Caofeng Pan & Zhong Lin Wang, 2018. "Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Bryant Chu & William Burnett & Jong Won Chung & Zhenan Bao, 2017. "Bring on the bodyNET," Nature, Nature, vol. 549(7672), pages 328-330, September.
    4. Sanwei Hao & Qingjin Fu & Lei Meng & Feng Xu & Jun Yang, 2022. "A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Haodong Liu & Chengfeng Du & Liling Liao & Hongjian Zhang & Haiqing Zhou & Weichang Zhou & Tianning Ren & Zhicheng Sun & Yufei Lu & Zhentao Nie & Feng Xu & Jixin Zhu & Wei Huang, 2022. "Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Zahra Azimi Dijvejin & Mandeep Chhajer Jain & Ryan Kozak & Mohammad H. Zarifi & Kevin Golovin, 2022. "Smart low interfacial toughness coatings for on-demand de-icing without melting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxi Huang & Qiongling Ding & Hao Wang & Zixuan Wu & Yibing Luo & Wenxiong Shi & Le Yang & Yujie Liang & Chuan Liu & Jin Wu, 2023. "Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Linlin Li & Shufang Zhao & Wenhao Ran & Zhexin Li & Yongxu Yan & Bowen Zhong & Zheng Lou & Lili Wang & Guozhen Shen, 2022. "Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Jin Pyo Lee & Hanhyeok Jang & Yeonwoo Jang & Hyeonseo Song & Suwoo Lee & Pooi See Lee & Jiyun Kim, 2024. "Encoding of multi-modal emotional information via personalized skin-integrated wireless facial interface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Xi Tian & Qihang Zeng & Selman A. Kurt & Renee R. Li & Dat T. Nguyen & Ze Xiong & Zhipeng Li & Xin Yang & Xiao Xiao & Changsheng Wu & Benjamin C. K. Tee & Denys Nikolayev & Christopher J. Charles & Jo, 2023. "Implant-to-implant wireless networking with metamaterial textiles," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Haoran Jin & Zesheng Zheng & Zequn Cui & Ying Jiang & Geng Chen & Wenlong Li & Zhimin Wang & Jilei Wang & Chuanshi Yang & Weitao Song & Xiaodong Chen & Yuanjin Zheng, 2023. "A flexible optoacoustic blood ‘stethoscope’ for noninvasive multiparametric cardiovascular monitoring," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Roberto de Fazio & Donato Cafagna & Giorgio Marcuccio & Alessandro Minerba & Paolo Visconti, 2020. "A Multi-Source Harvesting System Applied to Sensor-Based Smart Garments for Monitoring Workers’ Bio-Physical Parameters in Harsh Environments," Energies, MDPI, vol. 13(9), pages 1-33, May.
    7. Yufei Zhang & Qiuchun Lu & Jiang He & Zhihao Huo & Runhui Zhou & Xun Han & Mengmeng Jia & Caofeng Pan & Zhong Lin Wang & Junyi Zhai, 2023. "Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Shuo Li & Yong Zhang & Xiaoping Liang & Haomin Wang & Haojie Lu & Mengjia Zhu & Huimin Wang & Mingchao Zhang & Xinping Qiu & Yafeng Song & Yingying Zhang, 2022. "Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Xueguang Lu & Feilong Zhang & Liguo Zhu & Shan Peng & Jiazhen Yan & Qiwu Shi & Kefan Chen & Xue Chang & Hongfu Zhu & Cheng Zhang & Wanxia Huang & Qiang Cheng, 2024. "A terahertz meta-sensor array for 2D strain mapping," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Pengfei Xu & Shaojia Wang & Angela Lin & Hyun-Kee Min & Zhanfeng Zhou & Wenkun Dou & Yu Sun & Xi Huang & Helen Tran & Xinyu Liu, 2023. "Conductive and elastic bottlebrush elastomers for ultrasoft electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Rui Xu & Gilbert Santiago Cañón Bermúdez & Oleksandr V. Pylypovskyi & Oleksii M. Volkov & Eduardo Sergio Oliveros Mata & Yevhen Zabila & Rico Illing & Pavlo Makushko & Pavel Milkin & Leonid Ionov & Jü, 2022. "Self-healable printed magnetic field sensors using alternating magnetic fields," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Sanwei Hao & Qingjin Fu & Lei Meng & Feng Xu & Jun Yang, 2022. "A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Xingkai Ju & Jiao Kong & Guohua Qi & Shuping Hou & Xingkang Diao & Shaojun Dong & Yongdong Jin, 2024. "A wearable electrostimulation-augmented ionic-gel photothermal patch doped with MXene for skin tumor treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44735-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.