IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44587-z.html
   My bibliography  Save this article

Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides

Author

Listed:
  • Shengnan Sun

    (Agency for Science, Technology and Research (A*STAR))

  • Chencheng Dai

    (Nanyang Technological University
    The Cambridge Centre for Advanced Research and Education in Singapore)

  • Peng Zhao

    (Agency for Science, Technology and Research (A*STAR))

  • Shibo Xi

    (Energy and Environment (ISCE²), Agency for Science, Technology and Research (A*STAR))

  • Yi Ren

    (Agency for Science, Technology and Research (A*STAR))

  • Hui Ru Tan

    (Agency for Science, Technology and Research (A*STAR))

  • Poh Chong Lim

    (Agency for Science, Technology and Research (A*STAR))

  • Ming Lin

    (Agency for Science, Technology and Research (A*STAR))

  • Caozheng Diao

    (National University of Singapore, 5 Research Link)

  • Danwei Zhang

    (Agency for Science, Technology and Research (A*STAR))

  • Chao Wu

    (Energy and Environment (ISCE²), Agency for Science, Technology and Research (A*STAR)
    Sichuan University)

  • Anke Yu

    (Nanyang Technological University)

  • Jie Cheng Jackson Koh

    (Nanyang Technological University)

  • Wei Ying Lieu

    (Agency for Science, Technology and Research (A*STAR)
    Singapore University of Technology and Design)

  • Debbie Hwee Leng Seng

    (Agency for Science, Technology and Research (A*STAR))

  • Libo Sun

    (The Cambridge Centre for Advanced Research and Education in Singapore
    City University of Hong Kong)

  • Yuke Li

    (Agency for Science, Technology and Research (A*STAR))

  • Teck Leong Tan

    (Agency for Science, Technology and Research (A*STAR))

  • Jia Zhang

    (Agency for Science, Technology and Research (A*STAR))

  • Zhichuan J. Xu

    (Nanyang Technological University)

  • Zhi Wei Seh

    (Agency for Science, Technology and Research (A*STAR))

Abstract

The electrochemical conversion of nitrate to ammonia is a way to eliminate nitrate pollutant in water. Cu-Co synergistic effect was found to produce excellent performance in ammonia generation. However, few studies have focused on this effect in high-entropy oxides. Here, we report the spin-related Cu-Co synergistic effect on electrochemical nitrate-to-ammonia conversion using high-entropy oxide Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. In contrast, the Li-incorporated MgCoNiCuZnO exhibits inferior performance. By correlating the electronic structure, we found that the Co spin states are crucial for the Cu-Co synergistic effect for ammonia generation. The Cu-Co pair with a high spin Co in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O can facilitate ammonia generation, while a low spin Co in Li-incorporated MgCoNiCuZnO decreases the Cu-Co synergistic effect on ammonia generation. These findings offer important insights in employing the synergistic effect and spin states inside for selective catalysis. It also indicates the generality of the magnetic effect in ammonia synthesis between electrocatalysis and thermal catalysis.

Suggested Citation

  • Shengnan Sun & Chencheng Dai & Peng Zhao & Shibo Xi & Yi Ren & Hui Ru Tan & Poh Chong Lim & Ming Lin & Caozheng Diao & Danwei Zhang & Chao Wu & Anke Yu & Jie Cheng Jackson Koh & Wei Ying Lieu & Debbie, 2024. "Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44587-z
    DOI: 10.1038/s41467-023-44587-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44587-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44587-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ang Cao & Vanessa J. Bukas & Vahid Shadravan & Zhenbin Wang & Hao Li & Jakob Kibsgaard & Ib Chorkendorff & Jens K. Nørskov, 2022. "A spin promotion effect in catalytic ammonia synthesis," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Zhen-Yu Wu & Mohammadreza Karamad & Xue Yong & Qizheng Huang & David A. Cullen & Peng Zhu & Chuan Xia & Qunfeng Xiao & Mohsen Shakouri & Feng-Yang Chen & Jung Yoon (Timothy) Kim & Yang Xia & Kimberly , 2021. "Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Jia-Yi Fang & Qi-Zheng Zheng & Yao-Yin Lou & Kuang-Min Zhao & Sheng-Nan Hu & Guang Li & Ouardia Akdim & Xiao-Yang Huang & Shi-Gang Sun, 2022. "Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Shuo Zhang & Jianghua Wu & Mengting Zheng & Xin Jin & Zihan Shen & Zhonghua Li & Yanjun Wang & Quan Wang & Xuebin Wang & Hui Wei & Jiangwei Zhang & Peng Wang & Shanqing Zhang & Liyan Yu & Lifeng Dong , 2023. "Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yan Liu & Jie Wei & Zhengwu Yang & Lirong Zheng & Jiankang Zhao & Zhimin Song & Yuhan Zhou & Jiajie Cheng & Junyang Meng & Zhigang Geng & Jie Zeng, 2024. "Efficient tandem electroreduction of nitrate into ammonia through coupling Cu single atoms with adjacent Co3O4," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Wanru Liao & Jun Wang & Ganghai Ni & Kang Liu & Changxu Liu & Shanyong Chen & Qiyou Wang & Yingkang Chen & Tao Luo & Xiqing Wang & Yanqiu Wang & Wenzhang Li & Ting-Shan Chan & Chao Ma & Hongmei Li & Y, 2024. "Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Jia-Yi Fang & Qi-Zheng Zheng & Yao-Yin Lou & Kuang-Min Zhao & Sheng-Nan Hu & Guang Li & Ouardia Akdim & Xiao-Yang Huang & Shi-Gang Sun, 2022. "Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Qiang Gao & Hemanth Somarajan Pillai & Yang Huang & Shikai Liu & Qingmin Mu & Xue Han & Zihao Yan & Hua Zhou & Qian He & Hongliang Xin & Huiyuan Zhu, 2022. "Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Yanmei Huang & Caihong He & Chuanqi Cheng & Shuhe Han & Meng He & Yuting Wang & Nannan Meng & Bin Zhang & Qipeng Lu & Yifu Yu, 2023. "Pulsed electroreduction of low-concentration nitrate to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jie Dai & Yawen Tong & Long Zhao & Zhiwei Hu & Chien-Te Chen & Chang-Yang Kuo & Guangming Zhan & Jiaxian Wang & Xingyue Zou & Qian Zheng & Wei Hou & Ruizhao Wang & Kaiyuan Wang & Rui Zhao & Xiang-Kui , 2024. "Spin polarized Fe1−Ti pairs for highly efficient electroreduction nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Xu, Haiyang & Zhang, Le & Wei, ShengJie & Tong, Xuan & Yang, Yue & Ji, Xu, 2024. "A novel solar system for photothermal-assisted electrocatalytic nitrate reduction reaction to ammonia," Renewable Energy, Elsevier, vol. 221(C).
    12. Wei Liu & Mengyang Xia & Chao Zhao & Ben Chong & Jiahe Chen & He Li & Honghui Ou & Guidong Yang, 2024. "Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Minmin Yan & Zengxi Wei & Zhichao Gong & Bernt Johannessen & Gonglan Ye & Guanchao He & Jingjing Liu & Shuangliang Zhao & Chunyu Cui & Huilong Fei, 2023. "Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Bocheng Zhang & Zechuan Dai & Yanxu Chen & Mingyu Cheng & Huaikun Zhang & Pingyi Feng & Buqi Ke & Yangyang Zhang & Genqiang Zhang, 2024. "Defect-induced triple synergistic modulation in copper for superior electrochemical ammonia production across broad nitrate concentrations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Jieyuan Li & Ruimin Chen & Jielin Wang & Ying Zhou & Guidong Yang & Fan Dong, 2022. "Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Wenhui He & Jian Zhang & Stefan Dieckhöfer & Swapnil Varhade & Ann Cathrin Brix & Anna Lielpetere & Sabine Seisel & João R. C. Junqueira & Wolfgang Schuhmann, 2022. "Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Weihua Guo & Siwei Zhang & Junjie Zhang & Haoran Wu & Yangbo Ma & Yun Song & Le Cheng & Liang Chang & Geng Li & Yong Liu & Guodan Wei & Lin Gan & Minghui Zhu & Shibo Xi & Xue Wang & Boris I. Yakobson , 2023. "Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Zichuang Li & Yangfan Lu & Jiang Li & Miao Xu & Yanpeng Qi & Sang-Won Park & Masaaki Kitano & Hideo Hosono & Jie-Sheng Chen & Tian-Nan Ye, 2023. "Multiple reaction pathway on alkaline earth imide supported catalysts for efficient ammonia synthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44587-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.