IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44578-0.html
   My bibliography  Save this article

Cell-type differential targeting of SETDB1 prevents aberrant CTCF binding, chromatin looping, and cis-regulatory interactions

Author

Listed:
  • Phoebe Lut Fei Tam

    (The Hong Kong University of Science and Technology, Clear Water Bay)

  • Ming Fung Cheung

    (The Hong Kong University of Science and Technology, Clear Water Bay
    The Hong Kong University of Science and Technology, Clear Water Bay)

  • Lu Yan Chan

    (The Hong Kong University of Science and Technology, Clear Water Bay
    The Hong Kong University of Science and Technology, Clear Water Bay)

  • Danny Leung

    (The Hong Kong University of Science and Technology, Clear Water Bay
    The Hong Kong University of Science and Technology, Clear Water Bay)

Abstract

SETDB1 is an essential histone methyltransferase that deposits histone H3 lysine 9 trimethylation (H3K9me3) to transcriptionally repress genes and repetitive elements. The function of differential H3K9me3 enrichment between cell-types remains unclear. Here, we demonstrate mutual exclusivity of H3K9me3 and CTCF across mouse tissues from different developmental timepoints. We analyze SETDB1 depleted cells and discover that H3K9me3 prevents aberrant CTCF binding independently of DNA methylation and H3K9me2. Such sites are enriched with SINE B2 retrotransposons. Moreover, analysis of higher-order genome architecture reveals that large chromatin structures including topologically associated domains and subnuclear compartments, remain intact in SETDB1 depleted cells. However, chromatin loops and local 3D interactions are disrupted, leading to transcriptional changes by modifying pre-existing chromatin landscapes. Specific genes with altered expression show differential interactions with dysregulated cis-regulatory elements. Collectively, we find that cell-type specific targets of SETDB1 maintain cellular identities by modulating CTCF binding, which shape nuclear architecture and transcriptomic networks.

Suggested Citation

  • Phoebe Lut Fei Tam & Ming Fung Cheung & Lu Yan Chan & Danny Leung, 2024. "Cell-type differential targeting of SETDB1 prevents aberrant CTCF binding, chromatin looping, and cis-regulatory interactions," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44578-0
    DOI: 10.1038/s41467-023-44578-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44578-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44578-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jesse R. Dixon & Inkyung Jung & Siddarth Selvaraj & Yin Shen & Jessica E. Antosiewicz-Bourget & Ah Young Lee & Zhen Ye & Audrey Kim & Nisha Rajagopal & Wei Xie & Yarui Diao & Jing Liang & Huimin Zhao , 2015. "Chromatin architecture reorganization during stem cell differentiation," Nature, Nature, vol. 518(7539), pages 331-336, February.
    2. Masaki Kato & Keiko Takemoto & Yoichi Shinkai, 2018. "A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Tarjei S. Mikkelsen & Manching Ku & David B. Jaffe & Biju Issac & Erez Lieberman & Georgia Giannoukos & Pablo Alvarez & William Brockman & Tae-Kyung Kim & Richard P. Koche & William Lee & Eric Mendenh, 2007. "Genome-wide maps of chromatin state in pluripotent and lineage-committed cells," Nature, Nature, vol. 448(7153), pages 553-560, August.
    4. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    5. Michael Lawrence & Wolfgang Huber & Hervé Pagès & Patrick Aboyoun & Marc Carlson & Robert Gentleman & Martin T Morgan & Vincent J Carey, 2013. "Software for Computing and Annotating Genomic Ranges," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-10, August.
    6. David U. Gorkin & Iros Barozzi & Yuan Zhao & Yanxiao Zhang & Hui Huang & Ah Young Lee & Bin Li & Joshua Chiou & Andre Wildberg & Bo Ding & Bo Zhang & Mengchi Wang & J. Seth Strattan & Jean M. Davidson, 2020. "Author Correction: An atlas of dynamic chromatin landscapes in mouse fetal development," Nature, Nature, vol. 586(7831), pages 31-31, October.
    7. Jingyi Wu & Bo Huang & He Chen & Qiangzong Yin & Yang Liu & Yunlong Xiang & Bingjie Zhang & Bofeng Liu & Qiujun Wang & Weikun Xia & Wenzhi Li & Yuanyuan Li & Jing Ma & Xu Peng & Hui Zheng & Jia Ming &, 2016. "The landscape of accessible chromatin in mammalian preimplantation embryos," Nature, Nature, vol. 534(7609), pages 652-657, June.
    8. Veronika Ostapcuk & Fabio Mohn & Sarah H. Carl & Anja Basters & Daniel Hess & Vytautas Iesmantavicius & Lisa Lampersberger & Matyas Flemr & Aparna Pandey & Nicolas H. Thomä & Joerg Betschinger & Marc , 2018. "Activity-dependent neuroprotective protein recruits HP1 and CHD4 to control lineage-specifying genes," Nature, Nature, vol. 557(7707), pages 739-743, May.
    9. Toshiyuki Matsui & Danny Leung & Hiroki Miyashita & Irina A. Maksakova & Hitoshi Miyachi & Hiroshi Kimura & Makoto Tachibana & Matthew C. Lorincz & Yoichi Shinkai, 2010. "Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET," Nature, Nature, vol. 464(7290), pages 927-931, April.
    10. David U. Gorkin & Iros Barozzi & Yuan Zhao & Yanxiao Zhang & Hui Huang & Ah Young Lee & Bin Li & Joshua Chiou & Andre Wildberg & Bo Ding & Bo Zhang & Mengchi Wang & J. Seth Strattan & Jean M. Davidson, 2020. "An atlas of dynamic chromatin landscapes in mouse fetal development," Nature, Nature, vol. 583(7818), pages 744-751, July.
    11. William W. Greenwald & He Li & Paola Benaglio & David Jakubosky & Hiroko Matsui & Anthony Schmitt & Siddarth Selvaraj & Matteo D’Antonio & Agnieszka D’Antonio-Chronowska & Erin N. Smith & Kelly A. Fra, 2019. "Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    12. Helen M. Rowe & Johan Jakobsson & Daniel Mesnard & Jacques Rougemont & Séverine Reynard & Tugce Aktas & Pierre V. Maillard & Hillary Layard-Liesching & Sonia Verp & Julien Marquis & François Spitz & D, 2010. "KAP1 controls endogenous retroviruses in embryonic stem cells," Nature, Nature, vol. 463(7278), pages 237-240, January.
    13. Zhenhai Du & Hui Zheng & Bo Huang & Rui Ma & Jingyi Wu & Xianglin Zhang & Jing He & Yunlong Xiang & Qiujun Wang & Yuanyuan Li & Jing Ma & Xu Zhang & Ke Zhang & Yang Wang & Michael Q. Zhang & Juntao Ga, 2017. "Allelic reprogramming of 3D chromatin architecture during early mammalian development," Nature, Nature, vol. 547(7662), pages 232-235, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poonam Dhillon & Kelly Ann Mulholland & Hailong Hu & Jihwan Park & Xin Sheng & Amin Abedini & Hongbo Liu & Allison Vassalotti & Junnan Wu & Katalin Susztak, 2023. "Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Hua Yu & Zhen Sun & Tianyu Tan & Hongru Pan & Jing Zhao & Ling Zhang & Jiayu Chen & Anhua Lei & Yuqing Zhu & Lang Chen & Yuyan Xu & Yaxin Liu & Ming Chen & Jinghao Sheng & Zhengping Xu & Pengxu Qian &, 2021. "rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    3. Yi Liao & Juntao Wang & Zhangsheng Zhu & Yuanlong Liu & Jinfeng Chen & Yongfeng Zhou & Feng Liu & Jianjun Lei & Brandon S. Gaut & Bihao Cao & J. J. Emerson & Changming Chen, 2022. "The 3D architecture of the pepper genome and its relationship to function and evolution," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Claire Marchal & Nivedita Singh & Zachary Batz & Jayshree Advani & Catherine Jaeger & Ximena Corso-Díaz & Anand Swaroop, 2022. "High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Kentaro Mochizuki & Jafar Sharif & Kenjiro Shirane & Kousuke Uranishi & Aaron B. Bogutz & Sanne M. Janssen & Ayumu Suzuki & Akihiko Okuda & Haruhiko Koseki & Matthew C. Lorincz, 2021. "Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Jia-Yong Zhong & Longjian Niu & Zhuo-Bin Lin & Xin Bai & Ying Chen & Feng Luo & Chunhui Hou & Chuan-Le Xiao, 2023. "High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Sophia Groh & Anna Viktoria Milton & Lisa Katherina Marinelli & Cara V. Sickinger & Angela Russo & Heike Bollig & Gustavo Pereira de Almeida & Andreas Schmidt & Ignasi Forné & Axel Imhof & Gunnar Scho, 2021. "Morc3 silences endogenous retroviruses by enabling Daxx-mediated histone H3.3 incorporation," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    8. Julia Minderjahn & Alexander Fischer & Konstantin Maier & Karina Mendes & Margit Nuetzel & Johanna Raithel & Hanna Stanewsky & Ute Ackermann & Robert Månsson & Claudia Gebhard & Michael Rehli, 2022. "Postmitotic differentiation of human monocytes requires cohesin-structured chromatin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Zhangyuan Pan & Yuelin Yao & Hongwei Yin & Zexi Cai & Ying Wang & Lijing Bai & Colin Kern & Michelle Halstead & Ganrea Chanthavixay & Nares Trakooljul & Klaus Wimmers & Goutam Sahana & Guosheng Su & M, 2021. "Pig genome functional annotation enhances the biological interpretation of complex traits and human disease," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. Sandhya Chandrasekaran & Sergio Espeso-Gil & Yong-Hwee Eddie Loh & Behnam Javidfar & Bibi Kassim & Yueyan Zhu & Yuan Zhang & Yuhao Dong & Lucy K. Bicks & Haixin Li & Prashanth Rajarajan & Cyril J. Pet, 2021. "Neuron-specific chromosomal megadomain organization is adaptive to recent retrotransposon expansions," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. Renata Bordeira-Carriço & Joana Teixeira & Marta Duque & Mafalda Galhardo & Diogo Ribeiro & Rafael D. Acemel & Panos. N. Firbas & Juan J. Tena & Ana Eufrásio & Joana Marques & Fábio J. Ferreira & Telm, 2022. "Multidimensional chromatin profiling of zebrafish pancreas to uncover and investigate disease-relevant enhancers," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Grigorios Georgolopoulos & Nikoletta Psatha & Mineo Iwata & Andrew Nishida & Tannishtha Som & Minas Yiangou & John A. Stamatoyannopoulos & Jeff Vierstra, 2021. "Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    13. Jacques Serizay & Cyril Matthey-Doret & Amaury Bignaud & Lyam Baudry & Romain Koszul, 2024. "Orchestrating chromosome conformation capture analysis with Bioconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Jennifer P. Nguyen & Timothy D. Arthur & Kyohei Fujita & Bianca M. Salgado & Margaret K. R. Donovan & Hiroko Matsui & Ji Hyun Kim & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2023. "eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    15. Ze Yan & Ji Yang & Wen-Tian Wei & Ming-Liang Zhou & Dong-Xin Mo & Xing Wan & Rui Ma & Mei-Ming Wu & Jia-Hui Huang & Ya-Jing Liu & Feng-Hua Lv & Meng-Hua Li, 2024. "A time-resolved multi-omics atlas of transcriptional regulation in response to high-altitude hypoxia across whole-body tissues," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    16. Nimrod Rappoport & Elad Chomsky & Takashi Nagano & Charlie Seibert & Yaniv Lubling & Yael Baran & Aviezer Lifshitz & Wing Leung & Zohar Mukamel & Ron Shamir & Peter Fraser & Amos Tanay, 2023. "Single cell Hi-C identifies plastic chromosome conformations underlying the gastrulation enhancer landscape," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Sudha Sunil Rajderkar & Kitt Paraiso & Maria Luisa Amaral & Michael Kosicki & Laura E. Cook & Fabrice Darbellay & Cailyn H. Spurrell & Marco Osterwalder & Yiwen Zhu & Han Wu & Sarah Yasmeen Afzal & Ma, 2024. "Dynamic enhancer landscapes in human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Adriana Arneson & Amin Haghani & Michael J. Thompson & Matteo Pellegrini & Soo Bin Kwon & Ha Vu & Emily Maciejewski & Mingjia Yao & Caesar Z. Li & Ake T. Lu & Marco Morselli & Liudmilla Rubbi & Bret B, 2022. "A mammalian methylation array for profiling methylation levels at conserved sequences," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44578-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.