IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44278-9.html
   My bibliography  Save this article

Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis

Author

Listed:
  • Shoupeng Cao

    (Max Planck Institute for Polymer Research)

  • Tsvetomir Ivanov

    (Max Planck Institute for Polymer Research)

  • Julian Heuer

    (Max Planck Institute for Polymer Research)

  • Calum T. J. Ferguson

    (Max Planck Institute for Polymer Research
    University of Birmingham)

  • Katharina Landfester

    (Max Planck Institute for Polymer Research)

  • Lucas Caire da Silva

    (Max Planck Institute for Polymer Research
    McGill University)

Abstract

Artificial organelles can manipulate cellular functions and introduce non-biological processes into cells. Coacervate droplets have emerged as a close analog of membraneless cellular organelles. Their biomimetic properties, such as molecular crowding and selective partitioning, make them promising components for designing cell-like materials. However, their use as artificial organelles has been limited by their complex molecular structure, limited control over internal microenvironment properties, and inherent colloidal instability. Here we report the design of dipeptide coacervates that exhibit enhanced stability, biocompatibility, and a hydrophobic microenvironment. The hydrophobic character facilitates the encapsulation of hydrophobic species, including transition metal-based catalysts, enhancing their efficiency in aqueous environments. Dipeptide coacervates carrying a metal-based catalyst are incorporated as active artificial organelles in cells and trigger an internal non-biological chemical reaction. The development of coacervates with a hydrophobic microenvironment opens an alternative avenue in the field of biomimetic materials with applications in catalysis and synthetic biology.

Suggested Citation

  • Shoupeng Cao & Tsvetomir Ivanov & Julian Heuer & Calum T. J. Ferguson & Katharina Landfester & Lucas Caire da Silva, 2024. "Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44278-9
    DOI: 10.1038/s41467-023-44278-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44278-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44278-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pierangelo Gobbo & Liangfei Tian & B. V. V. S Pavan Kumar & Samuel Turvey & Mattia Cattelan & Avinash J. Patil & Mauro Carraro & Marcella Bonchio & Stephen Mann, 2020. "Catalytic processing in ruthenium-based polyoxometalate coacervate protocells," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Carsten Donau & Fabian Späth & Marilyne Sosson & Brigitte A. K. Kriebisch & Fabian Schnitter & Marta Tena-Solsona & Hyun-Seo Kang & Elia Salibi & Michael Sattler & Hannes Mutschler & Job Boekhoven, 2020. "Active coacervate droplets as a model for membraneless organelles and protocells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Raghav R. Poudyal & Rebecca M. Guth-Metzler & Andrew J. Veenis & Erica A. Frankel & Christine D. Keating & Philip C. Bevilacqua, 2019. "Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Siddharth Deshpande & Frank Brandenburg & Anson Lau & Mart G. F. Last & Willem Kasper Spoelstra & Louis Reese & Sreekar Wunnava & Marileen Dogterom & Cees Dekker, 2019. "Spatiotemporal control of coacervate formation within liposomes," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Fatma Pir Cakmak & Saehyun Choi & McCauley O. Meyer & Philip C. Bevilacqua & Christine D. Keating, 2020. "Prebiotically-relevant low polyion multivalency can improve functionality of membraneless compartments," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Wiggert J. Altenburg & N. Amy Yewdall & Daan F. M. Vervoort & Marleen H. M. E. Stevendaal & Alexander F. Mason & Jan C. M. Hest, 2020. "Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    7. Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Björn Drobot & Juan M. Iglesias-Artola & Kristian Vay & Viktoria Mayr & Mrityunjoy Kar & Moritz Kreysing & Hannes Mutschler & T-Y Dora Tang, 2018. "Compartmentalised RNA catalysis in membrane-free coacervate protocells," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahua Wang & Manzar Abbas & Junyou Wang & Evan Spruijt, 2023. "Selective amide bond formation in redox-active coacervate protocells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Tommaso P. Fraccia & Nicolas Martin, 2023. "Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Andrea Testa & Mirco Dindo & Aleksander A. Rebane & Babak Nasouri & Robert W. Style & Ramin Golestanian & Eric R. Dufresne & Paola Laurino, 2021. "Sustained enzymatic activity and flow in crowded protein droplets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Alexander M. Bergmann & Jonathan Bauermann & Giacomo Bartolucci & Carsten Donau & Michele Stasi & Anna-Lena Holtmannspötter & Frank Jülicher & Christoph A. Weber & Job Boekhoven, 2023. "Liquid spherical shells are a non-equilibrium steady state of active droplets," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Songyang Liu & Yanwen Zhang & Xiaoxiao He & Mei Li & Jin Huang & Xiaohai Yang & Kemin Wang & Stephen Mann & Jianbo Liu, 2022. "Signal processing and generation of bioactive nitric oxide in a model prototissue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Peiying Li & Philipp Holliger & Shunsuke Tagami, 2022. "Hydrophobic-cationic peptides modulate RNA polymerase ribozyme activity by accretion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Avik Samanta & Maximilian Hörner & Wei Liu & Wilfried Weber & Andreas Walther, 2022. "Signal-processing and adaptive prototissue formation in metabolic DNA protocells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Annalena Salditt & Leonie Karr & Elia Salibi & Kristian Vay & Dieter Braun & Hannes Mutschler, 2023. "Ribozyme-mediated RNA synthesis and replication in a model Hadean microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Hanjin Seo & Hyomin Lee, 2022. "Spatiotemporal control of signal-driven enzymatic reaction in artificial cell-like polymersomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Vincent Ouazan-Reboul & Jaime Agudo-Canalejo & Ramin Golestanian, 2023. "Self-organization of primitive metabolic cycles due to non-reciprocal interactions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Sihan Tang & Jiang Gong & Yunsong Shi & Shifeng Wen & Qiang Zhao, 2022. "Spontaneous water-on-water spreading of polyelectrolyte membranes inspired by skin formation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Merlijn H. I. Haren & Brent S. Visser & Evan Spruijt, 2024. "Probing the surface charge of condensates using microelectrophoresis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Shang Dai & Zhenming Xie & Binqiang Wang & Rui Ye & Xinwen Ou & Chen Wang & Ning Yu & Cheng Huang & Jie Zhao & Chunhui Cai & Furong Zhang & Damiano Buratto & Taimoor Khan & Yan Qiao & Yuejin Hua & Ruh, 2023. "An inorganic mineral-based protocell with prebiotic radiation fitness," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Agustín Mangiarotti & Nannan Chen & Ziliang Zhao & Reinhard Lipowsky & Rumiana Dimova, 2023. "Wetting and complex remodeling of membranes by biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Damian Wollny & Benjamin Vernot & Jie Wang & Maria Hondele & Aram Safrastyan & Franziska Aron & Julia Micheel & Zhisong He & Anthony Hyman & Karsten Weis & J. Gray Camp & T.‐Y. Dora Tang & Barbara Tre, 2022. "Characterization of RNA content in individual phase-separated coacervate microdroplets," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Hua Wu & Xuanlin Du & Xiaohui Meng & Dong Qiu & Yan Qiao, 2021. "A three-tiered colloidosomal microreactor for continuous flow catalysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    20. Maruša Ramšak & Dominique A. Ramirez & Loren E. Hough & Michael R. Shirts & Sara Vidmar & Kristina Eleršič Filipič & Gregor Anderluh & Roman Jerala, 2023. "Programmable de novo designed coiled coil-mediated phase separation in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44278-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.