IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44305-9.html
   My bibliography  Save this article

Single-cell multi-omics analysis of human testicular germ cell tumor reveals its molecular features and microenvironment

Author

Listed:
  • Xiaojian Lu

    (Chinese Academy of Sciences
    Beijing Institute for Stem Cell and Regenerative Medicine
    University of Chinese Academy of Sciences)

  • Yanwei Luo

    (The Third Xiangya Hospital of Central South University)

  • Xichen Nie

    (University of Utah School of Medicine)

  • Bailing Zhang

    (Chinese Academy of Sciences
    Beijing Institute for Stem Cell and Regenerative Medicine
    University of Chinese Academy of Sciences)

  • Xiaoyan Wang

    (Chinese Academy of Sciences
    Beijing Institute for Stem Cell and Regenerative Medicine)

  • Ran Li

    (Chinese Academy of Sciences
    Beijing Institute for Stem Cell and Regenerative Medicine)

  • Guangmin Liu

    (Central South University)

  • Qianyin Zhou

    (Central South University)

  • Zhizhong Liu

    (Central South University)

  • Liqing Fan

    (Central South University
    Reproductive and Genetic Hospital of CITIC-Xiangya)

  • James M. Hotaling

    (University of Utah School of Medicine)

  • Zhe Zhang

    (Peking University Third Hospital
    Peking University Third Hospital)

  • Hao Bo

    (Central South University
    Reproductive and Genetic Hospital of CITIC-Xiangya)

  • Jingtao Guo

    (Chinese Academy of Sciences
    Beijing Institute for Stem Cell and Regenerative Medicine
    University of Chinese Academy of Sciences)

Abstract

Seminoma is the most common malignant solid tumor in 14 to 44 year-old men. However, its molecular features and tumor microenvironment (TME) is largely unexplored. Here, we perform a series of studies via genomics profiling (single cell multi-omics and spatial transcriptomics) and functional examination using seminoma samples and a seminoma cell line. We identify key gene expression programs share between seminoma and primordial germ cells, and further characterize the functions of TFAP2C in promoting tumor invasion and migration. We also identify 15 immune cell subtypes in TME, and find that subtypes with exhaustion features were located closer to the tumor region through combined spatial transcriptome analysis. Furthermore, we identify key pathways and genes that may facilitate seminoma disseminating beyond the seminiferous tubules. These findings advance our knowledge of seminoma tumorigenesis and produce a multi-omics atlas of in situ human seminoma microenvironment, which could help discover potential therapy targets for seminoma.

Suggested Citation

  • Xiaojian Lu & Yanwei Luo & Xichen Nie & Bailing Zhang & Xiaoyan Wang & Ran Li & Guangmin Liu & Qianyin Zhou & Zhizhong Liu & Liqing Fan & James M. Hotaling & Zhe Zhang & Hao Bo & Jingtao Guo, 2023. "Single-cell multi-omics analysis of human testicular germ cell tumor reveals its molecular features and microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44305-9
    DOI: 10.1038/s41467-023-44305-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44305-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44305-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter A. Szabo & Hanna Mendes Levitin & Michelle Miron & Mark E. Snyder & Takashi Senda & Jinzhou Yuan & Yim Ling Cheng & Erin C. Bush & Pranay Dogra & Puspa Thapa & Donna L. Farber & Peter A. Sims, 2019. "Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Juliane Winkler & Abisola Abisoye-Ogunniyan & Kevin J. Metcalf & Zena Werb, 2020. "Concepts of extracellular matrix remodelling in tumour progression and metastasis," Nature Communications, Nature, vol. 11(1), pages 1-19, December.
    3. Suoqin Jin & Christian F. Guerrero-Juarez & Lihua Zhang & Ivan Chang & Raul Ramos & Chen-Hsiang Kuan & Peggy Myung & Maksim V. Plikus & Qing Nie, 2021. "Inference and analysis of cell-cell communication using CellChat," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeff DeMartino & Michael T. Meister & Lindy L. Visser & Mariël Brok & Marian J. A. Groot Koerkamp & Amber K. L. Wezenaar & Laura S. Hiemcke-Jiwa & Terezinha Souza & Johannes H. M. Merks & Anne C. Rios, 2023. "Single-cell transcriptomics reveals immune suppression and cell states predictive of patient outcomes in rhabdomyosarcoma," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Zhenzhen Xun & Xinyu Ding & Yao Zhang & Benyan Zhang & Shujing Lai & Duowu Zou & Junke Zheng & Guoqiang Chen & Bing Su & Leng Han & Youqiong Ye, 2023. "Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Faith H. Brennan & Yang Li & Cankun Wang & Anjun Ma & Qi Guo & Yi Li & Nicole Pukos & Warren A. Campbell & Kristina G. Witcher & Zhen Guan & Kristina A. Kigerl & Jodie C. E. Hall & Jonathan P. Godbout, 2022. "Microglia coordinate cellular interactions during spinal cord repair in mice," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Sandra Curras-Alonso & Juliette Soulier & Thomas Defard & Christian Weber & Sophie Heinrich & Hugo Laporte & Sophie Leboucher & Sonia Lameiras & Marie Dutreix & Vincent Favaudon & Florian Massip & Tho, 2023. "An interactive murine single-cell atlas of the lung responses to radiation injury," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Wei Yang & Li-Bo Liu & Feng-Liang Liu & Yan-Hua Wu & Zi-Da Zhen & Dong-Ying Fan & Zi-Yang Sheng & Zheng-Ran Song & Jia-Tong Chang & Yong-Tang Zheng & Jing An & Pei-Gang Wang, 2023. "Single-cell RNA sequencing reveals the fragility of male spermatogenic cells to Zika virus-induced complement activation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Anjun Ma & Xiaoying Wang & Jingxian Li & Cankun Wang & Tong Xiao & Yuntao Liu & Hao Cheng & Juexin Wang & Yang Li & Yuzhou Chang & Jinpu Li & Duolin Wang & Yuexu Jiang & Li Su & Gang Xin & Shaopeng Gu, 2023. "Single-cell biological network inference using a heterogeneous graph transformer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Junjun Jing & Jifan Feng & Yuan Yuan & Tingwei Guo & Jie Lei & Fei Pei & Thach-Vu Ho & Yang Chai, 2022. "Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Daniel Dimitrov & Dénes Türei & Martin Garrido-Rodriguez & Paul L. Burmedi & James S. Nagai & Charlotte Boys & Ricardo O. Ramirez Flores & Hyojin Kim & Bence Szalai & Ivan G. Costa & Alberto Valdeoliv, 2022. "Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Nunya Chotiwan & Ebba Rosendal & Stefanie M. A. Willekens & Erin Schexnaydre & Emma Nilsson & Richard Lindqvist & Max Hahn & Ionut Sebastian Mihai & Federico Morini & Jianguo Zhang & Gregory D. Ebel &, 2023. "Type I interferon shapes brain distribution and tropism of tick-borne flavivirus," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Gregory Farber & Yanhan Dong & Qiaozi Wang & Mitesh Rathod & Haofei Wang & Michelle Dixit & Benjamin Keepers & Yifang Xie & Kendall Butz & William J. Polacheck & Jiandong Liu & Li Qian, 2024. "Direct conversion of cardiac fibroblasts into endothelial-like cells using Sox17 and Erg," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Rachael G. Aubin & Emma C. Troisi & Javier Montelongo & Adam N. Alghalith & Maclean P. Nasrallah & Mariarita Santi & Pablo G. Camara, 2022. "Pro-inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Osama Al-Dalahmah & Michael G. Argenziano & Adithya Kannan & Aayushi Mahajan & Julia Furnari & Fahad Paryani & Deborah Boyett & Akshay Save & Nelson Humala & Fatima Khan & Juncheng Li & Hong Lu & Yu S, 2023. "Re-convolving the compositional landscape of primary and recurrent glioblastoma reveals prognostic and targetable tissue states," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Yue Li & Tianfeng Lu & Pengzhen Dong & Jian Chen & Qiang Zhao & Yuying Wang & Tianheng Xiao & Honggang Wu & Quanyi Zhao & Hai Huang, 2024. "A single-cell atlas of Drosophila trachea reveals glycosylation-mediated Notch signaling in cell fate specification," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Nader Atlasy & Anna Bujko & Espen S. Bækkevold & Peter Brazda & Eva Janssen-Megens & Knut E. A. Lundin & Jørgen Jahnsen & Frode L. Jahnsen & Hendrik G. Stunnenberg, 2022. "Single cell transcriptomic analysis of the immune cell compartment in the human small intestine and in Celiac disease," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Hyuek Jong Lee & Jueun Lee & Myung Jin Yang & Young-Chan Kim & Seon Pyo Hong & Jung Mo Kim & Geum-Sook Hwang & Gou Young Koh, 2023. "Endothelial cell-derived stem cell factor promotes lipid accumulation through c-Kit-mediated increase of lipogenic enzymes in brown adipocytes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Wei Feng & Abha Bais & Haoting He & Cassandra Rios & Shan Jiang & Juan Xu & Cindy Chang & Dennis Kostka & Guang Li, 2022. "Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44305-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.