IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44303-x.html
   My bibliography  Save this article

Physics-aware differentiable design of magnetically actuated kirigami for shape morphing

Author

Listed:
  • Liwei Wang

    (Northwestern University)

  • Yilong Chang

    (Stanford University)

  • Shuai Wu

    (Stanford University)

  • Ruike Renee Zhao

    (Stanford University)

  • Wei Chen

    (Northwestern University)

Abstract

Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery.

Suggested Citation

  • Liwei Wang & Yilong Chang & Shuai Wu & Ruike Renee Zhao & Wei Chen, 2023. "Physics-aware differentiable design of magnetically actuated kirigami for shape morphing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44303-x
    DOI: 10.1038/s41467-023-44303-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44303-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44303-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yaoye Hong & Yinding Chi & Shuang Wu & Yanbin Li & Yong Zhu & Jie Yin, 2022. "Boundary curvature guided programmable shape-morphing kirigami sheets," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Robert Baines & Sree Kalyan Patiballa & Joran Booth & Luis Ramirez & Thomas Sipple & Andonny Garcia & Frank Fish & Rebecca Kramer-Bottiglio, 2022. "Multi-environment robotic transitions through adaptive morphogenesis," Nature, Nature, vol. 610(7931), pages 283-289, October.
    3. Wenqi Hu & Guo Zhan Lum & Massimo Mastrangeli & Metin Sitti, 2018. "Small-scale soft-bodied robot with multimodal locomotion," Nature, Nature, vol. 554(7690), pages 81-85, February.
    4. Zhiqiang Zheng & Huaping Wang & Lixin Dong & Qing Shi & Jianing Li & Tao Sun & Qiang Huang & Toshio Fukuda, 2021. "Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Shengzhu Yi & Liu Wang & Zhipeng Chen & Jian Wang & Xingyi Song & Pengfei Liu & Yuanxi Zhang & Qingqing Luo & Lelun Peng & Zhigang Wu & Chuan Fei Guo & Lelun Jiang, 2022. "High-throughput fabrication of soft magneto-origami machines," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Yoonho Kim & Hyunwoo Yuk & Ruike Zhao & Shawn A. Chester & Xuanhe Zhao, 2018. "Printing ferromagnetic domains for untethered fast-transforming soft materials," Nature, Nature, vol. 558(7709), pages 274-279, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Chenghai Li & Qiguang He & Yang Wang & Zhijian Wang & Zijun Wang & Raja Annapooranan & Michael I. Latz & Shengqiang Cai, 2022. "Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Wenbo Li & Huyue Chen & Zhiran Yi & Fuyi Fang & Xinyu Guo & Zhiyuan Wu & Qiuhua Gao & Lei Shao & Jian Xu & Guang Meng & Wenming Zhang, 2023. "Self-vectoring electromagnetic soft robots with high operational dimensionality," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Shaojun Jiang & Bo Li & Jun Zhao & Dong Wu & Yiyuan Zhang & Zhipeng Zhao & Yiyuan Zhang & Hao Yu & Kexiang Shao & Cong Zhang & Rui Li & Chao Chen & Zuojun Shen & Jie Hu & Bin Dong & Ling Zhu & Jiawen , 2023. "Magnetic Janus origami robot for cross-scale droplet omni-manipulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Jiefeng Sun & Elisha Lerner & Brandon Tighe & Clint Middlemist & Jianguo Zhao, 2023. "Embedded shape morphing for morphologically adaptive robots," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Jun Kyu Choe & Junsoo Kim & Hyeonseo Song & Joonbum Bae & Jiyun Kim, 2023. "A soft, self-sensing tensile valve for perceptive soft robots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Dezhao Lin & Fan Yang & Di Gong & Ruihong Li, 2023. "Bio-inspired magnetic-driven folded diaphragm for biomimetic robot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Xingxing Ke & Haochen Yong & Fukang Xu & Han Ding & Zhigang Wu, 2024. "Stenus-inspired, swift, and agile untethered insect-scale soft propulsors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Yifeng Shen & Dongdong Jin & Mingming Fu & Sanhu Liu & Zhiwu Xu & Qinghua Cao & Bo Wang & Guoqiang Li & Wenjun Chen & Shaoqin Liu & Xing Ma, 2023. "Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Xiong Yang & Rong Tan & Haojian Lu & Toshio Fukuda & Yajing Shen, 2022. "Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Yuanxi Zhang & Chengfeng Pan & Pengfei Liu & Lelun Peng & Zhouming Liu & Yuanyuan Li & Qingyuan Wang & Tong Wu & Zhe Li & Carmel Majidi & Lelun Jiang, 2023. "Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Yuanhao Chen & Cristian Valenzuela & Xuan Zhang & Xiao Yang & Ling Wang & Wei Feng, 2023. "Light-driven dandelion-inspired microfliers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Dong Wang & Baowen Zhao & Xinlei Li & Le Dong & Mengjie Zhang & Jiang Zou & Guoying Gu, 2023. "Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Shengzhu Yi & Liu Wang & Zhipeng Chen & Jian Wang & Xingyi Song & Pengfei Liu & Yuanxi Zhang & Qingqing Luo & Lelun Peng & Zhigang Wu & Chuan Fei Guo & Lelun Jiang, 2022. "High-throughput fabrication of soft magneto-origami machines," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Eric Sihite & Arash Kalantari & Reza Nemovi & Alireza Ramezani & Morteza Gharib, 2023. "Multi-Modal Mobility Morphobot (M4) with appendage repurposing for locomotion plasticity enhancement," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Yubing Guo & Jiachen Zhang & Wenqi Hu & Muhammad Turab Ali Khan & Metin Sitti, 2021. "Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44303-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.