IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44228-5.html
   My bibliography  Save this article

Autophagy of OTUD5 destabilizes GPX4 to confer ferroptosis-dependent kidney injury

Author

Listed:
  • Li-Kai Chu

    (Soochow University)

  • Xu Cao

    (Soochow University)

  • Lin Wan

    (Soochow University)

  • Qiang Diao

    (Nanjing University)

  • Yu Zhu

    (Soochow University)

  • Yu Kan

    (Soochow University)

  • Li-Li Ye

    (Soochow University)

  • Yi-Ming Mao

    (Shanghai Jiao Tong University School of Medicine)

  • Xing-Qiang Dong

    (Soochow University)

  • Qian-Wei Xiong

    (Soochow University)

  • Ming-Cui Fu

    (Soochow University)

  • Ting Zhang

    (Soochow University)

  • Hui-Ting Zhou

    (Soochow University)

  • Shi-Zhong Cai

    (Soochow University)

  • Zhou-Rui Ma

    (Soochow University)

  • Ssu-Wei Hsu

    (University of California Davis
    University of California Davis)

  • Reen Wu

    (University of California Davis)

  • Ching-Hsien Chen

    (University of California Davis
    University of California Davis)

  • Xiang-Ming Yan

    (Soochow University)

  • Jun Liu

    (Soochow University)

Abstract

Ferroptosis is an iron-dependent programmed cell death associated with severe kidney diseases, linked to decreased glutathione peroxidase 4 (GPX4). However, the spatial distribution of renal GPX4-mediated ferroptosis and the molecular events causing GPX4 reduction during ischemia-reperfusion (I/R) remain largely unknown. Using spatial transcriptomics, we identify that GPX4 is situated at the interface of the inner cortex and outer medulla, a hyperactive ferroptosis site post-I/R injury. We further discover OTU deubiquitinase 5 (OTUD5) as a GPX4-binding protein that confers ferroptosis resistance by stabilizing GPX4. During I/R, ferroptosis is induced by mTORC1-mediated autophagy, causing OTUD5 degradation and subsequent GPX4 decay. Functionally, OTUD5 deletion intensifies renal tubular cell ferroptosis and exacerbates acute kidney injury, while AAV-mediated OTUD5 delivery mitigates ferroptosis and promotes renal function recovery from I/R injury. Overall, this study highlights a new autophagy-dependent ferroptosis module: hypoxia/ischemia-induced OTUD5 autophagy triggers GPX4 degradation, offering a potential therapeutic avenue for I/R-related kidney diseases.

Suggested Citation

  • Li-Kai Chu & Xu Cao & Lin Wan & Qiang Diao & Yu Zhu & Yu Kan & Li-Li Ye & Yi-Ming Mao & Xing-Qiang Dong & Qian-Wei Xiong & Ming-Cui Fu & Ting Zhang & Hui-Ting Zhou & Shi-Zhong Cai & Zhou-Rui Ma & Ssu-, 2023. "Autophagy of OTUD5 destabilizes GPX4 to confer ferroptosis-dependent kidney injury," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44228-5
    DOI: 10.1038/s41467-023-44228-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44228-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44228-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leyuan Xu & Jiankan Guo & Dennis G. Moledina & Lloyd G. Cantley, 2022. "Immune-mediated tubule atrophy promotes acute kidney injury to chronic kidney disease transition," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Weimin Wang & Michael Green & Jae Eun Choi & Miguel Gijón & Paul D. Kennedy & Jeffrey K. Johnson & Peng Liao & Xueting Lang & Ilona Kryczek & Amanda Sell & Houjun Xia & Jiajia Zhou & Gaopeng Li & Jing, 2019. "CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy," Nature, Nature, vol. 569(7755), pages 270-274, May.
    3. Sascha Rutz & Nobuhiko Kayagaki & Qui T. Phung & Celine Eidenschenk & Rajkumar Noubade & Xiaoting Wang & Justin Lesch & Rongze Lu & Kim Newton & Oscar W. Huang & Andrea G. Cochran & Mark Vasser & Benj, 2015. "Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells," Nature, Nature, vol. 518(7539), pages 417-421, February.
    4. Zhen Miao & Michael S. Balzer & Ziyuan Ma & Hongbo Liu & Junnan Wu & Rojesh Shrestha & Tamas Aranyi & Amy Kwan & Ayano Kondo & Marco Pontoglio & Junhyong Kim & Mingyao Li & Klaus H. Kaestner & Katalin, 2021. "Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    5. Wulf Tonnus & Claudia Meyer & Christian Steinebach & Alexia Belavgeni & Anne Mässenhausen & Nadia Zamora Gonzalez & Francesca Maremonti & Florian Gembardt & Nina Himmerkus & Markus Latk & Sophie Locke, 2021. "Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dadi Jiang & Youming Guo & Tianyu Wang & Liang Wang & Yuelong Yan & Ling Xia & Rakesh Bam & Zhifen Yang & Hyemin Lee & Takao Iwawaki & Boyi Gan & Albert C. Koong, 2024. "IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Di-Yang Sun & Wen-Bin Wu & Jian-Jin Wu & Yu Shi & Jia-Jun Xu & Shen-Xi Ouyang & Chen Chi & Yi Shi & Qing-Xin Ji & Jin-Hao Miao & Jiang-Tao Fu & Jie Tong & Ping-Ping Zhang & Jia-Bao Zhang & Zhi-Yong Li, 2024. "Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Naomi Pode-Shakked & Megan Slack & Nambirajan Sundaram & Ruth Schreiber & Kyle W. McCracken & Benjamin Dekel & Michael Helmrath & Raphael Kopan, 2023. "RAAS-deficient organoids indicate delayed angiogenesis as a possible cause for autosomal recessive renal tubular dysgenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Ying Xue & Fujia Lu & Zhenzhen Chang & Jing Li & Yuan Gao & Jie Zhou & Ying Luo & Yongfeng Lai & Siyuan Cao & Xiaoxiao Li & Yuhan Zhou & Yan Li & Zheng Tan & Xiang Cheng & Xiong Li & Jing Chen & Weimi, 2023. "Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Zhigui Zuo & Hao Yin & Yu Zhang & Congying Xie & Qinyang Wang, 2023. "A cytotoxic T cell inspired oncolytic nanosystem promotes lytic cell death by lipid peroxidation and elicits antitumor immune responses," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Wei E. Gordon & Seungbyn Baek & Hai P. Nguyen & Yien-Ming Kuo & Rachael Bradley & Sarah L. Fong & Nayeon Kim & Alex Galazyuk & Insuk Lee & Melissa R. Ingala & Nancy B. Simmons & Tony Schountz & Lisa N, 2024. "Integrative single-cell characterization of a frugivorous and an insectivorous bat kidney and pancreas," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Mingming Wu & Xiao Zhang & Weijie Zhang & Yi Shiou Chiou & Wenchang Qian & Xiangtian Liu & Min Zhang & Hong Yan & Shilan Li & Tao Li & Xinghua Han & Pengxu Qian & Suling Liu & Yueyin Pan & Peter E. Lo, 2022. "Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Man Chen & Madhav C. Menon & Wenlin Wang & Jia Fu & Zhengzi Yi & Zeguo Sun & Jessica Liu & Zhengzhe Li & Lingyun Mou & Khadija Banu & Sui-Wan Lee & Ying Dai & Nanditha Anandakrishnan & Evren U. Azelog, 2023. "HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Yoshiharu Muto & Eryn E. Dixon & Yasuhiro Yoshimura & Haojia Wu & Kohei Omachi & Nicolas Ledru & Parker C. Wilson & Andrew J. King & N. Eric Olson & Marvin G. Gunawan & Jay J. Kuo & Jennifer H. Cox & , 2022. "Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Haojia Wu & Eryn E. Dixon & Qiao Xuanyuan & Juanru Guo & Yasuhiro Yoshimura & Chitnis Debashish & Anezka Niesnerova & Hao Xu & Morgane Rouault & Benjamin D. Humphreys, 2024. "High resolution spatial profiling of kidney injury and repair using RNA hybridization-based in situ sequencing," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Nicolas Ledru & Parker C. Wilson & Yoshiharu Muto & Yasuhiro Yoshimura & Haojia Wu & Dian Li & Amish Asthana & Stefan G. Tullius & Sushrut S. Waikar & Giuseppe Orlando & Benjamin D. Humphreys, 2024. "Predicting proximal tubule failed repair drivers through regularized regression analysis of single cell multiomic sequencing," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Luca Bordoni & Anders M. Kristensen & Donato Sardella & Hanne Kidmose & Layla Pohl & Søren Rasmus Palmelund Krag & Ina Maria Schiessl, 2023. "Longitudinal tracking of acute kidney injury reveals injury propagation along the nephron," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Duomeng Yang & Tingting Geng & Andrew G. Harrison & Jason G. Cahoon & Jian Xing & Baihai Jiao & Mark Wang & Chao Cheng & Robert E. Hill & Huadong Wang & Anthony T. Vella & Gong Cheng & Yanlin Wang & P, 2024. "UBR5 promotes antiviral immunity by disengaging the transcriptional brake on RIG-I like receptors," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Bujamin H. Vokshi & Guillaume Davidson & Nassim Tawanaie Pour Sedehi & Alexandra Helleux & Marc Rippinger & Alexandre R. Haller & Justine Gantzer & Jonathan Thouvenin & Philippe Baltzinger & Rachida B, 2023. "SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Michael S. Balzer & Tomohito Doke & Ya-Wen Yang & Daniel L. Aldridge & Hailong Hu & Hung Mai & Dhanunjay Mukhi & Ziyuan Ma & Rojesh Shrestha & Matthew B. Palmer & Christopher A. Hunter & Katalin Suszt, 2022. "Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Zhihong Wang & He Wang & Yan Zhou & Lu Li & Mengge Lyu & Chunlong Wu & Tianen He & Lingling Tan & Yi Zhu & Tiannan Guo & Hongkun Wu & Hao Zhang & Yaoting Sun, 2024. "An individualized protein-based prognostic model to stratify pediatric patients with papillary thyroid carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Chen-Rui Xia & Zhi-Jie Cao & Xin-Ming Tu & Ge Gao, 2023. "Spatial-linked alignment tool (SLAT) for aligning heterogenous slices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Da-Yun Jin & Xuejie Chen & Yizhou Liu & Craig M. Williams & Lars C. Pedersen & Darrel W. Stafford & Jian-Ke Tie, 2023. "A genome-wide CRISPR-Cas9 knockout screen identifies FSP1 as the warfarin-resistant vitamin K reductase," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44228-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.