IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43719-9.html
   My bibliography  Save this article

Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes

Author

Listed:
  • Tina Rönn

    (Scania University Hospital)

  • Jones K. Ofori

    (Scania University Hospital)

  • Alexander Perfilyev

    (Scania University Hospital)

  • Alexander Hamilton

    (Scania University Hospital
    University of Copenhagen)

  • Karolina Pircs

    (Lund University
    Neurobiology and Neurodegenerative Diseases Research Group
    Semmelweis University)

  • Fabian Eichelmann

    (German Institute of Human Nutrition Potsdam-Rehbruecke
    German Center for Diabetes Research)

  • Sonia Garcia-Calzon

    (Scania University Hospital
    University of Navarra)

  • Alexandros Karagiannopoulos

    (Scania University Hospital)

  • Hans Stenlund

    (Umeå University)

  • Anna Wendt

    (Scania University Hospital)

  • Petr Volkov

    (Scania University Hospital)

  • Matthias B. Schulze

    (German Institute of Human Nutrition Potsdam-Rehbruecke
    German Center for Diabetes Research
    University of Potsdam)

  • Hindrik Mulder

    (Scania University Hospital)

  • Lena Eliasson

    (Scania University Hospital)

  • Sabrina Ruhrmann

    (Scania University Hospital)

  • Karl Bacos

    (Scania University Hospital)

  • Charlotte Ling

    (Scania University Hospital)

Abstract

Epigenetic dysregulation may influence disease progression. Here we explore whether epigenetic alterations in human pancreatic islets impact insulin secretion and type 2 diabetes (T2D). In islets, 5,584 DNA methylation sites exhibit alterations in T2D cases versus controls and are associated with HbA1c in individuals not diagnosed with T2D. T2D-associated methylation changes are found in enhancers and regions bound by β-cell-specific transcription factors and associated with reduced expression of e.g. CABLES1, FOXP1, GABRA2, GLR1A, RHOT1, and TBC1D4. We find RHOT1 (MIRO1) to be a key regulator of insulin secretion in human islets. Rhot1-deficiency in β-cells leads to reduced insulin secretion, ATP/ADP ratio, mitochondrial mass, Ca2+, and respiration. Regulators of mitochondrial dynamics and metabolites, including L-proline, glycine, GABA, and carnitines, are altered in Rhot1-deficient β-cells. Islets from diabetic GK rats present Rhot1-deficiency. Finally, RHOT1methylation in blood is associated with future T2D. Together, individuals with T2D exhibit epigenetic alterations linked to mitochondrial dysfunction in pancreatic islets.

Suggested Citation

  • Tina Rönn & Jones K. Ofori & Alexander Perfilyev & Alexander Hamilton & Karolina Pircs & Fabian Eichelmann & Sonia Garcia-Calzon & Alexandros Karagiannopoulos & Hans Stenlund & Anna Wendt & Petr Volko, 2023. "Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43719-9
    DOI: 10.1038/s41467-023-43719-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43719-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43719-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qin Yang & Timothy E. Graham & Nimesh Mody & Frederic Preitner & Odile D. Peroni & Janice M. Zabolotny & Ko Kotani & Loredana Quadro & Barbara B. Kahn, 2005. "Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes," Nature, Nature, vol. 436(7049), pages 356-362, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    2. Yu Zou & Da-Hong Wang & Noriko Sakano & Yoshie Sato & Suketaka Iwanaga & Kazuhisa Taketa & Masayuki Kubo & Kei Takemoto & Chie Masatomi & Kiyomi Inoue & Keiki Ogino, 2014. "Associations of Serum Retinol, α-Tocopherol, and γ-Tocopherol with Biomarkers among Healthy Japanese Men," IJERPH, MDPI, vol. 11(2), pages 1-14, January.
    3. Demetrios Petrakis & Loukia Vassilopoulou & Charalampos Mamoulakis & Christos Psycharakis & Aliki Anifantaki & Stavros Sifakis & Anca Oana Docea & John Tsiaoussis & Antonios Makrigiannakis & Aristides, 2017. "Endocrine Disruptors Leading to Obesity and Related Diseases," IJERPH, MDPI, vol. 14(10), pages 1-18, October.
    4. Konxhe Kulaj & Alexandra Harger & Michaela Bauer & Özüm S. Caliskan & Tilak Kumar Gupta & Dapi Menglin Chiang & Edward Milbank & Josefine Reber & Angelos Karlas & Petra Kotzbeck & David N. Sailer & Fr, 2023. "Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Jonathan M. Dreyfuss & Yixing Yuchi & Xuehong Dong & Vissarion Efthymiou & Hui Pan & Donald C. Simonson & Ashley Vernon & Florencia Halperin & Pratik Aryal & Anish Konkar & Yinong Sebastian & Brandon , 2021. "High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Lidwina Priliani & Sukma Oktavianthi & Elizabeth L Prado & Safarina G Malik & Anuraj H Shankar, 2020. "Maternal biomarker patterns for metabolism and inflammation in pregnancy are influenced by multiple micronutrient supplementation and associated with child biomarker patterns and nutritional status at," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    7. Federica Catalano & Francesca De Vito & Velia Cassano & Teresa Vanessa Fiorentino & Angela Sciacqua & Marta Letizia Hribal, 2022. "Circadian Clock Desynchronization and Insulin Resistance," IJERPH, MDPI, vol. 20(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43719-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.