IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43654-9.html
   My bibliography  Save this article

Conformational plasticity of RAS Q61 family of neoepitopes results in distinct features for targeted recognition

Author

Listed:
  • Andrew C. McShan

    (The Children’s Hospital of Philadelphia
    University of Pennsylvania
    Georgia Institute of Technology)

  • David Flores-Solis

    (University of California
    German Center for Neurodegenerative Diseases (DZNE))

  • Yi Sun

    (The Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • Samuel E. Garfinkle

    (The Children’s Hospital of Philadelphia
    University of Pennsylvania)

  • Jugmohit S. Toor

    (University of California
    Henry Ford Cancer Institute, Henry Ford Health)

  • Michael C. Young

    (The Children’s Hospital of Philadelphia)

  • Nikolaos G. Sgourakis

    (The Children’s Hospital of Philadelphia
    University of Pennsylvania)

Abstract

The conformational landscapes of peptide/human leucocyte antigen (pHLA) protein complexes encompassing tumor neoantigens provide a rationale for target selection towards autologous T cell, vaccine, and antibody-based therapeutic modalities. Here, using complementary biophysical and computational methods, we characterize recurrent RAS55-64 Q61 neoepitopes presented by the common HLA-A*01:01 allotype. We integrate sparse NMR restraints with Rosetta docking to determine the solution structure of NRASQ61K/HLA-A*01:01, which enables modeling of other common RAS55-64 neoepitopes. Hydrogen/deuterium exchange mass spectrometry experiments alongside molecular dynamics simulations reveal differences in solvent accessibility and conformational plasticity across a panel of common Q61 neoepitopes that are relevant for recognition by immunoreceptors. Finally, we predict binding and provide structural models of NRASQ61K antigens spanning the entire HLA allelic landscape, together with in vitro validation for HLA-A*01:191, HLA-B*15:01, and HLA-C*08:02. Our work provides a basis to delineate the solution surface features and immunogenicity of clinically relevant neoepitope/HLA targets for cancer therapy.

Suggested Citation

  • Andrew C. McShan & David Flores-Solis & Yi Sun & Samuel E. Garfinkle & Jugmohit S. Toor & Michael C. Young & Nikolaos G. Sgourakis, 2023. "Conformational plasticity of RAS Q61 family of neoepitopes results in distinct features for targeted recognition," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43654-9
    DOI: 10.1038/s41467-023-43654-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43654-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43654-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Santrupti Nerli & Viviane S. Paula & Andrew C. McShan & Nikolaos G. Sgourakis, 2021. "Backbone-independent NMR resonance assignments of methyl probes in large proteins," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Alexander Domnick & Christian Winter & Lukas Sušac & Leon Hennecke & Mario Hensen & Nicole Zitzmann & Simon Trowitzsch & Christoph Thomas & Robert Tampé, 2022. "Molecular basis of MHC I quality control in the peptide loading complex," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jiansheng Jiang & Daniel K. Taylor & Ellen J. Kim & Lisa F. Boyd & Javeed Ahmad & Michael G. Mage & Hau V. Truong & Claire H. Woodward & Nikolaos G. Sgourakis & Peter Cresswell & David H. Margulies & , 2022. "Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Hakimeh Ebrahimi-Nik & Marmar Moussa & Ryan P. Englander & Summit Singhaviranon & Justine Michaux & HuiSong Pak & Hiroko Miyadera & William L. Corwin & Grant L. J. Keller & Adam T. Hagymasi & Tatiana , 2021. "Reversion analysis reveals the in vivo immunogenicity of a poorly MHC I-binding cancer neoepitope," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Adham S. Bear & Tatiana Blanchard & Joseph Cesare & Michael J. Ford & Lee P. Richman & Chong Xu & Miren L. Baroja & Sarah McCuaig & Christina Costeas & Khatuna Gabunia & John Scholler & Avery D. Posey, 2021. "Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    6. Katharine M. Wright & Sarah R. DiNapoli & Michelle S. Miller & P. Aitana Azurmendi & Xiaowei Zhao & Zhiheng Yu & Mayukh Chakrabarti & WuXian Shi & Jacqueline Douglass & Michael S. Hwang & Emily Han-Ch, 2023. "Hydrophobic interactions dominate the recognition of a KRAS G12V neoantigen," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Huan Lan & Esam T. Abualrous & Jana Sticht & Laura Maria Arroyo Fernandez & Tamina Werk & Christoph Weise & Martin Ballaschk & Peter Schmieder & Bernhard Loll & Christian Freund, 2021. "Exchange catalysis by tapasin exploits conserved and allele-specific features of MHC-I molecules," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Sagar Gupta & Santrupti Nerli & Sreeja Kutti Kandy & Glenn L. Mersky & Nikolaos G. Sgourakis, 2023. "HLA3DB: comprehensive annotation of peptide/HLA complexes enables blind structure prediction of T cell epitopes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Thomas Evangelidis & Santrupti Nerli & Jiří Nováček & Andrew E. Brereton & P. Andrew Karplus & Rochelle R. Dotas & Vincenzo Venditti & Nikolaos G. Sgourakis & Konstantinos Tripsianes, 2018. "Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    10. Raghavendra Anjanappa & Maria Garcia-Alai & Janine-Denise Kopicki & Julia Lockhauserbäumer & Mohamed Aboelmagd & Janina Hinrichs & Ioana Maria Nemtanu & Charlotte Uetrecht & Martin Zacharias & Sebasti, 2020. "Structures of peptide-free and partially loaded MHC class I molecules reveal mechanisms of peptide selection," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    11. Andrew Poole & Vijaykumar Karuppiah & Annabelle Hartt & Jaafar N. Haidar & Sylvie Moureau & Tomasz Dobrzycki & Conor Hayes & Christopher Rowley & Jorge Dias & Stephen Harper & Keir Barnbrook & Miriam , 2022. "Therapeutic high affinity T cell receptor targeting a KRASG12D cancer neoantigen," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Dan Lu & Yuan Chen & Min Jiang & Jie Wang & Yiting Li & Keke Ma & Wenqiao Sun & Xing Zheng & Jianxun Qi & Wenjing Jin & Yu Chen & Yan Chai & Catherine W. H. Zhang & Hao Liang & Shuguang Tan & George F, 2023. "KRAS G12V neoantigen specific T cell receptor for adoptive T cell therapy against tumors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Kannan Natarajan & Andrew C. McShan & Jiansheng Jiang & Vlad K Kumirov & Rui Wang & Huaying Zhao & Peter Schuck & Mulualem E. Tilahun & Lisa F. Boyd & Jinfa Ying & Ad Bax & David H. Margulies & Nikola, 2017. "An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role," Nature Communications, Nature, vol. 8(1), pages 1-14, August.
    14. Andrew C. McShan & Christine A. Devlin & Giora I. Morozov & Sarah A. Overall & Danai Moschidi & Neha Akella & Erik Procko & Nikolaos G. Sgourakis, 2021. "TAPBPR promotes antigen loading on MHC-I molecules using a peptide trap," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiansheng Jiang & Daniel K. Taylor & Ellen J. Kim & Lisa F. Boyd & Javeed Ahmad & Michael G. Mage & Hau V. Truong & Claire H. Woodward & Nikolaos G. Sgourakis & Peter Cresswell & David H. Margulies & , 2022. "Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Dan Lu & Yuan Chen & Min Jiang & Jie Wang & Yiting Li & Keke Ma & Wenqiao Sun & Xing Zheng & Jianxun Qi & Wenjing Jin & Yu Chen & Yan Chai & Catherine W. H. Zhang & Hao Liang & Shuguang Tan & George F, 2023. "KRAS G12V neoantigen specific T cell receptor for adoptive T cell therapy against tumors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Alexander Domnick & Christian Winter & Lukas Sušac & Leon Hennecke & Mario Hensen & Nicole Zitzmann & Simon Trowitzsch & Christoph Thomas & Robert Tampé, 2022. "Molecular basis of MHC I quality control in the peptide loading complex," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Lenong Li & Xubiao Peng & Mansoor Batliwala & Marlene Bouvier, 2023. "Crystal structures of MHC class I complexes reveal the elusive intermediate conformations explored during peptide editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Ines Katharina Müller & Christian Winter & Christoph Thomas & Robbert M. Spaapen & Simon Trowitzsch & Robert Tampé, 2022. "Structure of an MHC I–tapasin–ERp57 editing complex defines chaperone promiscuity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Anthony C. Bishop & Glorisé Torres-Montalvo & Sravya Kotaru & Kyle Mimun & A. Joshua Wand, 2023. "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. John P. Finnigan & Jenna H. Newman & Yury Patskovsky & Larysa Patskovska & Andrew S. Ishizuka & Geoffrey M. Lynn & Robert A. Seder & Michelle Krogsgaard & Nina Bhardwaj, 2024. "Structural basis for self-discrimination by neoantigen-specific TCRs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Chi Zhou & Wenxin Li & Zhenxing Liang & Xianrui Wu & Sijing Cheng & Jianhong Peng & Kaixuan Zeng & Weihao Li & Ping Lan & Xin Yang & Li Xiong & Ziwei Zeng & Xiaobin Zheng & Liang Huang & Wenhua Fan & , 2024. "Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Katharine M. Wright & Sarah R. DiNapoli & Michelle S. Miller & P. Aitana Azurmendi & Xiaowei Zhao & Zhiheng Yu & Mayukh Chakrabarti & WuXian Shi & Jacqueline Douglass & Michael S. Hwang & Emily Han-Ch, 2023. "Hydrophobic interactions dominate the recognition of a KRAS G12V neoantigen," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Dzana Dervovic & Ahmad A. Malik & Edward L. Y. Chen & Masahiro Narimatsu & Nina Adler & Somaieh Afiuni-Zadeh & Dagmar Krenbek & Sebastien Martinez & Ricky Tsai & Jonathan Boucher & Jacob M. Berman & K, 2023. "In vivo CRISPR screens reveal Serpinb9 and Adam2 as regulators of immune therapy response in lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    11. Anna C. Papageorgiou & Michaela Pospisilova & Jakub Cibulka & Raghib Ashraf & Christopher A. Waudby & Pavel Kadeřávek & Volha Maroz & Karel Kubicek & Zbynek Prokop & Lumir Krejci & Konstantinos Tripsi, 2023. "Recognition and coacervation of G-quadruplexes by a multifunctional disordered region in RECQ4 helicase," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43654-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.