IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43497-4.html
   My bibliography  Save this article

Brain methylome remodeling selectively regulates neuronal activity genes linking to emotional behaviors in mice exposed to maternal immune activation

Author

Listed:
  • Li Ma

    (University of Southern California)

  • Feng Wang

    (Emory University School of Medicine)

  • Yangping Li

    (Emory University School of Medicine)

  • Jing Wang

    (University of California Los Angeles)

  • Qing Chang

    (University of Southern California)

  • Yuanning Du

    (University of Southern California)

  • Jotham Sadan

    (University of Southern California)

  • Zhen Zhao

    (University of Southern California)

  • Guoping Fan

    (University of California Los Angeles)

  • Bing Yao

    (Emory University School of Medicine)

  • Jian-Fu Chen

    (University of Southern California)

Abstract

How early life experience is translated into storable epigenetic information leading to behavioral changes remains poorly understood. Here we found that Zika virus (ZIKV) induced-maternal immune activation (MIA) imparts offspring with anxiety- and depression-like behavior. By integrating bulk and single-nucleus RNA sequencing (snRNA-seq) with genome-wide 5hmC (5-hydroxymethylcytosine) profiling and 5mC (5-methylcytosine) profiling in prefrontal cortex (PFC) of ZIKV-affected male offspring mice, we revealed an overall loss of 5hmC and an increase of 5mC levels in intragenic regions, associated with transcriptional changes in neuropsychiatric disorder-related genes. In contrast to their rapid initiation and inactivation in normal conditions, immediate-early genes (IEGs) remain a sustained upregulation with enriched expression in excitatory neurons, which is coupled with increased 5hmC and decreased 5mC levels of IEGs in ZIKV-affected male offspring. Thus, MIA induces maladaptive methylome remodeling in brain and selectively regulates neuronal activity gene methylation linking to emotional behavioral abnormalities in offspring.

Suggested Citation

  • Li Ma & Feng Wang & Yangping Li & Jing Wang & Qing Chang & Yuanning Du & Jotham Sadan & Zhen Zhao & Guoping Fan & Bing Yao & Jian-Fu Chen, 2023. "Brain methylome remodeling selectively regulates neuronal activity genes linking to emotional behaviors in mice exposed to maternal immune activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43497-4
    DOI: 10.1038/s41467-023-43497-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43497-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43497-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ofer Yizhar & Lief E. Fenno & Matthias Prigge & Franziska Schneider & Thomas J. Davidson & Daniel J. O’Shea & Vikaas S. Sohal & Inbal Goshen & Joel Finkelstein & Jeanne T. Paz & Katja Stehfest & Roman, 2011. "Neocortical excitation/inhibition balance in information processing and social dysfunction," Nature, Nature, vol. 477(7363), pages 171-178, September.
    2. Carolina M. Greco & Paolo Kunderfranco & Marcello Rubino & Veronica Larcher & Pierluigi Carullo & Achille Anselmo & Kerstin Kurz & Thomas Carell & Andrea Angius & Michael V. G. Latronico & Roberto Pap, 2016. "DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy," Nature Communications, Nature, vol. 7(1), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Castonguay & Sébastien Thomas & Frédéric Lesage & Christian Casanova, 2014. "Repetitive and Retinotopically Restricted Activation of the Dorsal Lateral Geniculate Nucleus with Optogenetics," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    2. Giulia Faini & Dimitrii Tanese & Clément Molinier & Cécile Telliez & Massilia Hamdani & Francois Blot & Christophe Tourain & Vincent Sars & Filippo Bene & Benoît C. Forget & Emiliano Ronzitti & Valent, 2023. "Ultrafast light targeting for high-throughput precise control of neuronal networks," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Pan Xu & Yuanlei Yue & Juntao Su & Xiaoqian Sun & Hongfei Du & Zhichao Liu & Rahul Simha & Jianhui Zhou & Chen Zeng & Hui Lu, 2022. "Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yu-Jun Wang & Gui-Ying Zan & Cenglin Xu & Xue-Ping Li & Xuelian Shu & Song-Yu Yao & Xiao-Shan Xu & Xiaoyun Qiu & Yexiang Chen & Kai Jin & Qi-Xin Zhou & Jia-Yu Ye & Yi Wang & Lin Xu & Zhong Chen & Jing, 2023. "The claustrum-prelimbic cortex circuit through dynorphin/κ-opioid receptor signaling underlies depression-like behaviors associated with social stress etiology," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Zaher ElBeck & Mohammad Bakhtiar Hossain & Humam Siga & Nikolay Oskolkov & Fredrik Karlsson & Julia Lindgren & Anna Walentinsson & Dominique Koppenhöfer & Rebecca Jarvis & Roland Bürli & Tanguy Jamier, 2024. "Epigenetic modulators link mitochondrial redox homeostasis to cardiac function in a sex-dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    6. Qingtao Sun & Jianping Zhang & Anan Li & Mei Yao & Guangcai Liu & Siqi Chen & Yue Luo & Zhi Wang & Hui Gong & Xiangning Li & Qingming Luo, 2022. "Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    7. Luye Qin & Jamal B. Williams & Tao Tan & Tiaotiao Liu & Qing Cao & Kaijie Ma & Zhen Yan, 2021. "Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    8. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Rodrigo G. Fernandez Lahore & Niccolò P. Pampaloni & Enrico Schiewer & M.-Marcel Heim & Linda Tillert & Johannes Vierock & Johannes Oppermann & Jakob Walther & Dietmar Schmitz & David Owald & Andrew J, 2022. "Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Weijie Ye & Xiaoying Chen, 2023. "Effects of NMDA Receptor Hypofunction on Inhibitory Control in a Two-Layer Neural Circuit Model," Mathematics, MDPI, vol. 11(19), pages 1-12, September.
    11. Jung Ho Hyun & Kenichiro Nagahama & Ho Namkung & Neymi Mignocchi & Seung-Eon Roh & Patrick Hannan & Sarah Krüssel & Chuljung Kwak & Abigail McElroy & Bian Liu & Mingguang Cui & Seunghwan Lee & Dongmin, 2022. "Tagging active neurons by soma-targeted Cal-Light," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Henry W. Kietzman & Gracy Trinoskey-Rice & Sarah A. Blumenthal & Jidong D. Guo & Shannon L. Gourley, 2022. "Social incentivization of instrumental choice in mice requires amygdala-prelimbic cortex-nucleus accumbens connectivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Noemi S Araújo & Selvin Z Reyes-Garcia & João A F Brogin & Douglas D Bueno & Esper A Cavalheiro & Carla A Scorza & Jean Faber, 2022. "Chaotic and stochastic dynamics of epileptiform-like activities in sclerotic hippocampus resected from patients with pharmacoresistant epilepsy," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-31, April.
    14. Pfaffelhuber, P. & Rotter, S. & Stiefel, J., 2022. "Mean-field limits for non-linear Hawkes processes with excitation and inhibition," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 57-78.
    15. Lizhu Li & Lihui Lu & Yuqi Ren & Guo Tang & Yu Zhao & Xue Cai & Zhao Shi & He Ding & Changbo Liu & Dali Cheng & Yang Xie & Huachun Wang & Xin Fu & Lan Yin & Minmin Luo & Xing Sheng, 2022. "Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Zihao Chen & Yechao Han & Zheng Ma & Xinnian Wang & Surui Xu & Yong Tang & Alexei L. Vyssotski & Bailu Si & Yang Zhan, 2024. "A prefrontal-thalamic circuit encodes social information for social recognition," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43497-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.