IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43362-4.html
   My bibliography  Save this article

A distinct Acyl-CoA binding protein (ACBP6) shapes tissue plasticity during nutrient adaptation in Drosophila

Author

Listed:
  • Xiaotong Li

    (Texas A&M University, School of Medicine)

  • Jason Karpac

    (Texas A&M University, School of Medicine)

Abstract

Nutrient availability is a major selective force in the evolution of metazoa, and thus plasticity in tissue function and morphology is shaped by adaptive responses to nutrient changes. Utilizing Drosophila, we reveal that distinct calibration of acyl-CoA metabolism, mediated by Acbp6 (Acyl-CoA binding-protein 6), is critical for nutrient-dependent tissue plasticity. Drosophila Acbp6, which arose by evolutionary duplication and binds acyl-CoA to tune acetyl-CoA metabolism, is required for intestinal resizing after nutrient deprivation through activating intestinal stem cell proliferation from quiescence. Disruption of acyl-CoA metabolism by Acbp6 attenuation drives aberrant ‘switching’ of metabolic networks in intestinal enterocytes during nutrient adaptation, impairing acetyl-CoA metabolism and acetylation amid intestinal resizing. We also identified STAT92e, whose function is influenced by acetyl-CoA levels, as a key regulator of acyl-CoA and nutrient-dependent changes in stem cell activation. These findings define a regulatory mechanism, shaped by acyl-CoA metabolism, that adjusts proliferative homeostasis to coordinately regulate tissue plasticity during nutrient adaptation.

Suggested Citation

  • Xiaotong Li & Jason Karpac, 2023. "A distinct Acyl-CoA binding protein (ACBP6) shapes tissue plasticity during nutrient adaptation in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43362-4
    DOI: 10.1038/s41467-023-43362-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43362-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43362-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sean B. Carroll, 2001. "Chance and necessity: the evolution of morphological complexity and diversity," Nature, Nature, vol. 409(6823), pages 1102-1109, February.
    2. Philipp Mews & Greg Donahue & Adam M. Drake & Vincent Luczak & Ted Abel & Shelley L. Berger, 2017. "Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory," Nature, Nature, vol. 546(7658), pages 381-386, June.
    3. Jackson Liang & Shruthi Balachandra & Sang Ngo & Lucy Erin O’Brien, 2017. "Feedback regulation of steady-state epithelial turnover and organ size," Nature, Nature, vol. 548(7669), pages 588-591, August.
    4. Daniel Wilinski & Jasmine Winzeler & William Duren & Jenna L. Persons & Kristina J. Holme & Johan Mosquera & Morteza Khabiri & Jason M. Kinchen & Peter L. Freddolino & Alla Karnovsky & Monica Dus, 2019. "Rapid metabolic shifts occur during the transition between hunger and satiety in Drosophila melanogaster," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte M. François & Thomas Pihl & Marion Dunoyer de Segonzac & Chloé Hérault & Bruno Hudry, 2023. "Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Lashin, Sergey A. & Matushkin, Yury G. & Suslov, Valentin V. & Kolchanov, Nikolay A., 2012. "Computer modeling of genome complexity variation trends in prokaryotic communities under varying habitat conditions," Ecological Modelling, Elsevier, vol. 224(1), pages 124-129.
    3. Fabien Lafuma & Ian J. Corfe & Julien Clavel & Nicolas Di-Poï, 2021. "Multiple evolutionary origins and losses of tooth complexity in squamates," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Rajaram, R. & Castellani, B., 2016. "An entropy based measure for comparing distributions of complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 35-43.
    5. Voorhoeve, Niels & Allan, Douglas C. & Moret, M.A. & Zebende, G.F. & Phillips, J.C., 2018. "Why human milk is more nutritious than cow milk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 302-309.
    6. Wen-Xiang Liu & Hai-Ning Liu & Zhan-Ping Weng & Qi Geng & Yue Zhang & Ya-Feng Li & Wei Shen & Yang Zhou & Teng Zhang, 2023. "Maternal vitamin B1 is a determinant for the fate of primordial follicle formation in offspring," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Sotir Sotirov & Evdokia Sotirova & Vassia Atanassova & Krassimir Atanassov & Oscar Castillo & Patricia Melin & Todor Petkov & Stanimir Surchev, 2018. "A Hybrid Approach for Modular Neural Network Design Using Intercriteria Analysis and Intuitionistic Fuzzy Logic," Complexity, Hindawi, vol. 2018, pages 1-11, April.
    8. Cazzolla Gatti, Roberto, 2021. "A multi-armed bandit algorithm speeds up the evolution of cooperation," Ecological Modelling, Elsevier, vol. 439(C).
    9. Ellen McMullen & Helen Hertenstein & Katrin Strassburger & Leon Deharde & Marko Brankatschk & Stefanie Schirmeier, 2023. "Glycolytically impaired Drosophila glial cells fuel neural metabolism via β-oxidation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43362-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.