IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43343-7.html
   My bibliography  Save this article

Single PbS colloidal quantum dot transistors

Author

Listed:
  • Kenji Shibata

    (Tohoku Institute of Technology)

  • Masaki Yoshida

    (Tohoku Institute of Technology)

  • Kazuhiko Hirakawa

    (University of Tokyo
    University of Tokyo)

  • Tomohiro Otsuka

    (Tohoku University
    Tohoku University
    Tohoku University
    Tohoku University)

  • Satria Zulkarnaen Bisri

    (RIKEN Center for Emergent Matter Science
    Tokyo University of Agriculture and Technology)

  • Yoshihiro Iwasa

    (RIKEN Center for Emergent Matter Science
    University of Tokyo)

Abstract

Colloidal quantum dots are sub-10 nm semiconductors treated with liquid processes, rendering them attractive candidates for single-electron transistors operating at high temperatures. However, there have been few reports on single-electron transistors using colloidal quantum dots due to the difficulty in fabrication. In this work, we fabricated single-electron transistors using single oleic acid-capped PbS quantum dot coupled to nanogap metal electrodes and measured single-electron tunneling. We observed dot size-dependent carrier transport, orbital-dependent electron charging energy and conductance, electric field modulation of the electron confinement potential, and the Kondo effect, which provide nanoscopic insights into carrier transport through single colloidal quantum dots. Moreover, the large charging energy in small quantum dots enables single-electron transistor operation even at room temperature. These findings, as well as the commercial availability and high stability, make PbS quantum dots promising for the development of quantum information and optoelectronic devices, particularly room-temperature single-electron transistors with excellent optical properties.

Suggested Citation

  • Kenji Shibata & Masaki Yoshida & Kazuhiko Hirakawa & Tomohiro Otsuka & Satria Zulkarnaen Bisri & Yoshihiro Iwasa, 2023. "Single PbS colloidal quantum dot transistors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43343-7
    DOI: 10.1038/s41467-023-43343-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43343-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43343-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaojie Hao & Rusko Ruskov & Ming Xiao & Charles Tahan & HongWen Jiang, 2014. "Electron spin resonance and spin–valley physics in a silicon double quantum dot," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    2. Yadong Yin & A. Paul Alivisatos, 2005. "Colloidal nanocrystal synthesis and the organic–inorganic interface," Nature, Nature, vol. 437(7059), pages 664-670, September.
    3. David Press & Thaddeus D. Ladd & Bingyang Zhang & Yoshihisa Yamamoto, 2008. "Complete quantum control of a single quantum dot spin using ultrafast optical pulses," Nature, Nature, vol. 456(7219), pages 218-221, November.
    4. D. Goldhaber-Gordon & Hadas Shtrikman & D. Mahalu & David Abusch-Magder & U. Meirav & M. A. Kastner, 1998. "Kondo effect in a single-electron transistor," Nature, Nature, vol. 391(6663), pages 156-159, January.
    5. Wenjie Liang & Matthew P. Shores & Marc Bockrath & Jeffrey R. Long & Hongkun Park, 2002. "Kondo resonance in a single-molecule transistor," Nature, Nature, vol. 417(6890), pages 725-729, June.
    6. B. M. Maune & M. G. Borselli & B. Huang & T. D. Ladd & P. W. Deelman & K. S. Holabird & A. A. Kiselev & I. Alvarado-Rodriguez & R. S. Ross & A. E. Schmitz & M. Sokolich & C. A. Watson & M. F. Gyure & , 2012. "Coherent singlet-triplet oscillations in a silicon-based double quantum dot," Nature, Nature, vol. 481(7381), pages 344-347, January.
    7. David L. Klein & Richard Roth & Andrew K. L. Lim & A. Paul Alivisatos & Paul L. McEuen, 1997. "A single-electron transistor made from a cadmium selenide nanocrystal," Nature, Nature, vol. 389(6652), pages 699-701, October.
    8. Ricky Dwi Septianto & Retno Miranti & Tomoka Kikitsu & Takaaki Hikima & Daisuke Hashizume & Nobuhiro Matsushita & Yoshihiro Iwasa & Satria Zulkarnaen Bisri, 2023. "Enabling metallic behaviour in two-dimensional superlattice of semiconductor colloidal quantum dots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. C. Piquard & P. Glidic & C. Han & A. Aassime & A. Cavanna & U. Gennser & Y. Meir & E. Sela & A. Anthore & F. Pierre, 2023. "Observing the universal screening of a Kondo impurity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. J.-B. Trebbia & Q. Deplano & P. Tamarat & B. Lounis, 2022. "Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Qing-Xia Chen & Yu-Yang Lu & Yang Yang & Li-Ge Chang & Yi Li & Yuan Yang & Zhen He & Jian-Wei Liu & Yong Ni & Shu-Hong Yu, 2024. "Stress-induced ordering evolution of 1D segmented heteronanostructures and their chemical post-transformations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Brian Paquelet Wuetz & Merritt P. Losert & Sebastian Koelling & Lucas E. A. Stehouwer & Anne-Marije J. Zwerver & Stephan G. J. Philips & Mateusz T. Mądzik & Xiao Xue & Guoji Zheng & Mario Lodari & Ser, 2022. "Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Clemens Spinnler & Liang Zhai & Giang N. Nguyen & Julian Ritzmann & Andreas D. Wieck & Arne Ludwig & Alisa Javadi & Doris E. Reiter & Paweł Machnikowski & Richard J. Warburton & Matthias C. Löbl, 2021. "Optically driving the radiative Auger transition," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    8. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Hualiang Lv & Yuxing Yao & Mingyue Yuan & Guanyu Chen & Yuchao Wang & Longjun Rao & Shucong Li & Ufuoma I. Kara & Robert L. Dupont & Cheng Zhang & Boyuan Chen & Bo Liu & Xiaodi Zhou & Renbing Wu & Sol, 2024. "Functional nanoporous graphene superlattice," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Yanping Chen & Yu Yao & Wantong Zhao & Lifeng Wang & Haitao Li & Jiangwei Zhang & Baojun Wang & Yi Jia & Riguang Zhang & Yan Yu & Jian Liu, 2023. "Precise solid-phase synthesis of CoFe@FeOx nanoparticles for efficient polysulfide regulation in lithium/sodium-sulfur batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. R. Žitko & G. G. Blesio & L. O. Manuel & A. A. Aligia, 2021. "Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Hamed Almohammadi & Sandra Martinek & Ye Yuan & Peter Fischer & Raffaele Mezzenga, 2023. "Disentangling kinetics from thermodynamics in heterogeneous colloidal systems," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Annika Kurzmann & Yaakov Kleeorin & Chuyao Tong & Rebekka Garreis & Angelika Knothe & Marius Eich & Christopher Mittag & Carolin Gold & Folkert Kornelis Vries & Kenji Watanabe & Takashi Taniguchi & Vl, 2021. "Kondo effect and spin–orbit coupling in graphene quantum dots," Nature Communications, Nature, vol. 12(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43343-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.