IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42775-5.html
   My bibliography  Save this article

Resorbable barrier polymers for flexible bioelectronics

Author

Listed:
  • Samantha M. McDonald

    (Duke University)

  • Quansan Yang

    (Northwestern University
    Northwestern University)

  • Yen-Hao Hsu

    (Duke University)

  • Shantanu P. Nikam

    (Duke University)

  • Ziying Hu

    (Northwestern University)

  • Zilu Wang

    (University of North Carolina-Chapel Hill)

  • Darya Asheghali

    (Duke University)

  • Tiffany Yen

    (Duke University)

  • Andrey V. Dobrynin

    (University of North Carolina-Chapel Hill)

  • John A. Rogers

    (Northwestern University
    Northwestern University
    Northwestern University
    Northwestern University)

  • Matthew L. Becker

    (Duke University
    Duke University
    Duke University
    Duke University)

Abstract

Resorbable, implantable bioelectronic devices are emerging as powerful tools to reliably monitor critical physiological parameters in real time over extended periods. While degradable magnesium-based electronics have pioneered this effort, relatively short functional lifetimes have slowed clinical translation. Barrier films that are both flexible and resorbable over predictable timelines would enable tunability in device lifetime and expand the viability of these devices. Herein, we present a library of stereocontrolled succinate-based copolyesters which leverage copolymer composition and processing method to afford tunability over thermomechanical, crystalline, and barrier properties. One copolymer composition within this library has extended the functional lifetime of transient bioelectronic prototypes over existing systems by several weeks–representing a considerable step towards translational devices.

Suggested Citation

  • Samantha M. McDonald & Quansan Yang & Yen-Hao Hsu & Shantanu P. Nikam & Ziying Hu & Zilu Wang & Darya Asheghali & Tiffany Yen & Andrey V. Dobrynin & John A. Rogers & Matthew L. Becker, 2023. "Resorbable barrier polymers for flexible bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42775-5
    DOI: 10.1038/s41467-023-42775-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42775-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42775-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mary Beth Wandel & Craig A. Bell & Jiayi Yu & Maria C. Arno & Nathan Z. Dreger & Yen-Hao Hsu & Anaïs Pitto-Barry & Joshua C. Worch & Andrew P. Dove & Matthew L. Becker, 2021. "Concomitant control of mechanical properties and degradation in resorbable elastomer-like materials using stereochemistry and stoichiometry for soft tissue engineering," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Seung-Kyun Kang & Rory K. J. Murphy & Suk-Won Hwang & Seung Min Lee & Daniel V. Harburg & Neil A. Krueger & Jiho Shin & Paul Gamble & Huanyu Cheng & Sooyoun Yu & Zhuangjian Liu & Jordan G. McCall & Ma, 2016. "Bioresorbable silicon electronic sensors for the brain," Nature, Nature, vol. 530(7588), pages 71-76, February.
    3. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quansan Yang & Ziying Hu & Min-Ho Seo & Yameng Xu & Ying Yan & Yen-Hao Hsu & Jaime Berkovich & Kwonjae Lee & Tzu-Li Liu & Samantha McDonald & Haolin Nie & Hannah Oh & Mingzheng Wu & Jin-Tae Kim & Step, 2022. "High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Matthew S. Brown & Louis Somma & Melissa Mendoza & Yeonsik Noh & Gretchen J. Mahler & Ahyeon Koh, 2022. "Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Martin Hjort & Abdelrazek H. Mousa & David Bliman & Muhammad Anwar Shameem & Karin Hellman & Amit Singh Yadav & Peter Ekström & Fredrik Ek & Roger Olsson, 2023. "In situ assembly of bioresorbable organic bioelectronics in the brain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Jie Cao & Xusheng Liu & Jie Qiu & Zhifei Yue & Yang Li & Qian Xu & Yan Chen & Jiewen Chen & Hongfei Cheng & Guozhong Xing & Enming Song & Ming Wang & Qi Liu & Ming Liu, 2024. "Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Anthony E. Hughes & Nawshad Haque & Stephen A. Northey & Sarbjit Giddey, 2021. "Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts," Resources, MDPI, vol. 10(9), pages 1-40, September.
    7. Luis Hernández-Álvarez & Juan José Bullón Pérez & Farrah Kristel Batista & Araceli Queiruga-Dios, 2022. "Security Threats and Cryptographic Protocols for Medical Wearables," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
    8. Jian Lv & Gurunathan Thangavel & Yangyang Xin & Dace Gao & Wei Church Poh & Shaohua Chen & Pooi See Lee, 2023. "Printed sustainable elastomeric conductor for soft electronics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Myeongki Cho & Jeong-Kyu Han & Jungmin Suh & Jeong Jin Kim & Jae Ryun Ryu & In Sik Min & Mingyu Sang & Selin Lim & Tae Soo Kim & Kyubeen Kim & Kyowon Kang & Kyuhyun Hwang & Kanghwan Kim & Eun-Bin Hong, 2024. "Fully bioresorbable hybrid opto-electronic neural implant system for simultaneous electrophysiological recording and optogenetic stimulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42775-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.