IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42668-7.html
   My bibliography  Save this article

Development of mesothelioma-specific oncolytic immunotherapy enabled by immunopeptidomics of murine and human mesothelioma tumors

Author

Listed:
  • Jacopo Chiaro

    (University of Helsinki
    University of Helsinki
    University of Helsinki
    University of Helsinki)

  • Gabriella Antignani

    (University of Helsinki
    University of Helsinki
    University of Helsinki
    University of Helsinki)

  • Sara Feola

    (University of Helsinki
    University of Helsinki
    University of Helsinki
    University of Helsinki)

  • Michaela Feodoroff

    (University of Helsinki
    University of Helsinki
    University of Helsinki
    University of Helsinki)

  • Beatriz Martins

    (University of Helsinki
    University of Helsinki
    University of Helsinki
    University of Helsinki)

  • Hanne Cojoc

    (Valo Therapeutics Oy)

  • Salvatore Russo

    (University of Helsinki
    University of Helsinki
    University of Helsinki
    University of Helsinki)

  • Manlio Fusciello

    (University of Helsinki
    University of Helsinki
    University of Helsinki
    University of Helsinki)

  • Firas Hamdan

    (University of Helsinki
    University of Helsinki
    University of Helsinki
    University of Helsinki)

  • Valentina Ferrari

    (Department of Biomedical Sciences, Humanitas University)

  • Daniele Ciampi

    (Department of Biomedical Sciences, Humanitas University)

  • Ilkka Ilonen

    (Helsinki University Hospital
    University of Helsinki)

  • Jari Räsänen

    (Helsinki University Hospital
    University of Helsinki)

  • Mikko Mäyränpää

    (Helsinki University Hospital)

  • Jukka Partanen

    (Research & Development Finnish Red Cross Blood Service Helsinki)

  • Satu Koskela

    (Finnish Red Cross Blood Service Biobank)

  • Jarno Honkanen

    (Finnish Red Cross Blood Service Biobank)

  • Jussi Halonen

    (Finnish Red Cross Blood Service Biobank)

  • Lukasz Kuryk

    (Valo Therapeutics Oy
    National Institute of Public Health NIH—National Research Institute)

  • Maria Rescigno

    (Department of Biomedical Sciences, Humanitas University
    IRCCS Humanitas Research Hospital)

  • Mikaela Grönholm

    (University of Helsinki
    University of Helsinki
    University of Helsinki
    University of Helsinki)

  • Rui M. Branca

    (Karolinska Institutet)

  • Janne Lehtiö

    (Karolinska Institutet)

  • Vincenzo Cerullo

    (University of Helsinki
    University of Helsinki
    University of Helsinki
    University of Helsinki)

Abstract

Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. As the available therapeutic options show a lack of efficacy, novel therapeutic strategies are urgently needed. Given its T-cell infiltration, we hypothesized that MPM is a suitable target for therapeutic cancer vaccination. To date, research on mesothelioma has focused on the identification of molecular signatures to better classify and characterize the disease, and little is known about therapeutic targets that engage cytotoxic (CD8+) T cells. In this study we investigate the immunopeptidomic antigen-presented landscape of MPM in both murine (AB12 cell line) and human cell lines (H28, MSTO-211H, H2452, and JL1), as well as in patients’ primary tumors. Applying state-of-the-art immuno-affinity purification methodologies, we identify MHC I-restricted peptides presented on the surface of malignant cells. We characterize in vitro the immunogenicity profile of the eluted peptides using T cells from human healthy donors and cancer patients. Furthermore, we use the most promising peptides to formulate an oncolytic virus-based precision immunotherapy (PeptiCRAd) and test its efficacy in a mouse model of mesothelioma in female mice. Overall, we demonstrate that the use of immunopeptidomic analysis in combination with oncolytic immunotherapy represents a feasible and effective strategy to tackle untreatable tumors.

Suggested Citation

  • Jacopo Chiaro & Gabriella Antignani & Sara Feola & Michaela Feodoroff & Beatriz Martins & Hanne Cojoc & Salvatore Russo & Manlio Fusciello & Firas Hamdan & Valentina Ferrari & Daniele Ciampi & Ilkka I, 2023. "Development of mesothelioma-specific oncolytic immunotherapy enabled by immunopeptidomics of murine and human mesothelioma tumors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42668-7
    DOI: 10.1038/s41467-023-42668-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42668-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42668-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick A. Ott & Zhuting Hu & Derin B. Keskin & Sachet A. Shukla & Jing Sun & David J. Bozym & Wandi Zhang & Adrienne Luoma & Anita Giobbie-Hurder & Lauren Peter & Christina Chen & Oriol Olive & Todd , 2017. "An immunogenic personal neoantigen vaccine for patients with melanoma," Nature, Nature, vol. 547(7662), pages 217-221, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Y. Zhou & Fei Zou & Wei Sun, 2023. "Prioritizing candidate peptides for cancer vaccines through predicting peptide presentation by HLA‐I proteins," Biometrics, The International Biometric Society, vol. 79(3), pages 2664-2676, September.
    2. Jens Bauer & Natalie Köhler & Yacine Maringer & Philip Bucher & Tatjana Bilich & Melissa Zwick & Severin Dicks & Annika Nelde & Marissa Dubbelaar & Jonas Scheid & Marcel Wacker & Jonas S. Heitmann & S, 2022. "The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. John P. Finnigan & Jenna H. Newman & Yury Patskovsky & Larysa Patskovska & Andrew S. Ishizuka & Geoffrey M. Lynn & Robert A. Seder & Michelle Krogsgaard & Nina Bhardwaj, 2024. "Structural basis for self-discrimination by neoantigen-specific TCRs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Meghana Pagadala & Timothy J. Sears & Victoria H. Wu & Eva Pérez-Guijarro & Hyo Kim & Andrea Castro & James V. Talwar & Cristian Gonzalez-Colin & Steven Cao & Benjamin J. Schmiedel & Shervin Goudarzi , 2023. "Germline modifiers of the tumor immune microenvironment implicate drivers of cancer risk and immunotherapy response," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Ashish Goyal & Jens Bauer & Joschka Hey & Dimitris N. Papageorgiou & Ekaterina Stepanova & Michael Daskalakis & Jonas Scheid & Marissa Dubbelaar & Boris Klimovich & Dominic Schwarz & Melanie Märklin &, 2023. "DNMT and HDAC inhibition induces immunogenic neoantigens from human endogenous retroviral element-derived transcripts," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Georges Bedran & Daniel A. Polasky & Yi Hsiao & Fengchao Yu & Felipe Veiga Leprevost & Javier A. Alfaro & Marcin Cieslik & Alexey I. Nesvizhskii, 2023. "Unraveling the glycosylated immunopeptidome with HLA-Glyco," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Naomi Hoenisch Gravel & Annika Nelde & Jens Bauer & Lena Mühlenbruch & Sarah M. Schroeder & Marian C. Neidert & Jonas Scheid & Steffen Lemke & Marissa L. Dubbelaar & Marcel Wacker & Anna Dengler & Rei, 2023. "TOFIMS mass spectrometry-based immunopeptidomics refines tumor antigen identification," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Luis F. Schachner & Christopher Mullen & Wilson Phung & Joshua D. Hinkle & Michelle Irwin Beardsley & Tracy Bentley & Peter Day & Christina Tsai & Siddharth Sukumaran & Tomasz Baginski & Danielle DiCa, 2024. "Exposing the molecular heterogeneity of glycosylated biotherapeutics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Hakimeh Ebrahimi-Nik & Marmar Moussa & Ryan P. Englander & Summit Singhaviranon & Justine Michaux & HuiSong Pak & Hiroko Miyadera & William L. Corwin & Grant L. J. Keller & Adam T. Hagymasi & Tatiana , 2021. "Reversion analysis reveals the in vivo immunogenicity of a poorly MHC I-binding cancer neoepitope," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42668-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.