IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42433-w.html
   My bibliography  Save this article

Respiratory mucosal immune memory to SARS-CoV-2 after infection and vaccination

Author

Listed:
  • Elena Mitsi

    (University of Oxford
    Liverpool School of Tropical Medicine)

  • Mariana O. Diniz

    (UCL)

  • Jesús Reiné

    (University of Oxford
    Liverpool School of Tropical Medicine)

  • Andrea M. Collins

    (Liverpool School of Tropical Medicine)

  • Ryan E. Robinson

    (Liverpool School of Tropical Medicine)

  • Angela Hyder-Wright

    (Liverpool School of Tropical Medicine)

  • Madlen Farrar

    (Liverpool School of Tropical Medicine)

  • Konstantinos Liatsikos

    (Liverpool School of Tropical Medicine)

  • Josh Hamilton

    (Liverpool School of Tropical Medicine)

  • Onyia Onyema

    (Liverpool School of Tropical Medicine)

  • Britta C. Urban

    (University of Oxford
    Liverpool School of Tropical Medicine)

  • Carla Solórzano

    (University of Oxford
    Liverpool School of Tropical Medicine)

  • Sandra Belij-Rammerstorfer

    (University of Oxford)

  • Emma Sheehan

    (University of Oxford)

  • Teresa Lambe

    (University of Oxford
    University of Oxford)

  • Simon J. Draper

    (University of Oxford)

  • Daniela Weiskopf

    (La Jolla Institute for Immunology (LJI))

  • Alessandro Sette

    (La Jolla Institute for Immunology (LJI)
    University of California, San Diego)

  • Mala K. Maini

    (UCL)

  • Daniela M. Ferreira

    (University of Oxford
    Liverpool School of Tropical Medicine)

Abstract

Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, the capacity of peripheral vaccination to generate sustained immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Here we show using bronchoalveolar lavage samples that donors with history of both infection and vaccination have more airway mucosal SARS-CoV-2 antibodies and memory B cells than those only vaccinated. Infection also induces populations of airway spike-specific memory CD4+ and CD8+ T cells that are not expanded by vaccination alone. Airway mucosal T cells induced by infection have a distinct hierarchy of antigen specificity compared to the periphery. Spike-specific T cells persist in the lung mucosa for 7 months after the last immunising event. Thus, peripheral vaccination alone does not appear to induce durable lung mucosal immunity against SARS-CoV-2, supporting an argument for the need for vaccines targeting the airways.

Suggested Citation

  • Elena Mitsi & Mariana O. Diniz & Jesús Reiné & Andrea M. Collins & Ryan E. Robinson & Angela Hyder-Wright & Madlen Farrar & Konstantinos Liatsikos & Josh Hamilton & Onyia Onyema & Britta C. Urban & Ca, 2023. "Respiratory mucosal immune memory to SARS-CoV-2 after infection and vaccination," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42433-w
    DOI: 10.1038/s41467-023-42433-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42433-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42433-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aloysious Ssemaganda & Huong Mai Nguyen & Faisal Nuhu & Naima Jahan & Catherine M. Card & Sandra Kiazyk & Giulia Severini & Yoav Keynan & Ruey-Chyi Su & Hezhao Ji & Bernard Abrenica & Paul J. McLaren , 2022. "Expansion of cytotoxic tissue-resident CD8+ T cells and CCR6+CD161+ CD4+ T cells in the nasal mucosa following mRNA COVID-19 vaccination," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Dennis Lapuente & Jana Fuchs & Jonas Willar & Ana Vieira Antão & Valentina Eberlein & Nadja Uhlig & Leila Issmail & Anna Schmidt & Friederike Oltmanns & Antonia Sophia Peter & Sandra Mueller-Schmucker, 2021. "Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Kaori Sano & Disha Bhavsar & Gagandeep Singh & Daniel Floda & Komal Srivastava & Charles Gleason & Juan Manuel Carreño & Viviana Simon & Florian Krammer, 2022. "SARS-CoV-2 vaccination induces mucosal antibody responses in previously infected individuals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anneliese S. Ashhurst & Matt D. Johansen & Joshua W. C. Maxwell & Skye Stockdale & Caroline L. Ashley & Anupriya Aggarwal & Rezwan Siddiquee & Stefan Miemczyk & Duc H. Nguyen & Joel P. Mackay & Claudi, 2022. "Mucosal TLR2-activating protein-based vaccination induces potent pulmonary immunity and protection against SARS-CoV-2 in mice," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Hong Lei & Aqu Alu & Jingyun Yang & Xi He & Cai He & Wenyan Ren & Zimin Chen & Weiqi Hong & Li Chen & Xuemei He & Li Yang & Jiong Li & Zhenling Wang & Wei Wang & Yuquan Wei & Shuaiyao Lu & Guangwen Lu, 2023. "Cationic crosslinked carbon dots-adjuvanted intranasal vaccine induces protective immunity against Omicron-included SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Aloysious Ssemaganda & Huong Mai Nguyen & Faisal Nuhu & Naima Jahan & Catherine M. Card & Sandra Kiazyk & Giulia Severini & Yoav Keynan & Ruey-Chyi Su & Hezhao Ji & Bernard Abrenica & Paul J. McLaren , 2022. "Expansion of cytotoxic tissue-resident CD8+ T cells and CCR6+CD161+ CD4+ T cells in the nasal mucosa following mRNA COVID-19 vaccination," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42433-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.