IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42253-y.html
   My bibliography  Save this article

Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis

Author

Listed:
  • Wei Sun

    (China Academy of Chinese Medical Sciences
    Chengdu University of Traditional Chinese Medicine)

  • Qinggang Yin

    (China Academy of Chinese Medical Sciences
    China Academy of Chinese Medical Sciences)

  • Huihua Wan

    (China Academy of Chinese Medical Sciences)

  • Ranran Gao

    (China Academy of Chinese Medical Sciences
    China Academy of Chinese Medical Sciences)

  • Chao Xiong

    (China Academy of Chinese Medical Sciences
    Wuhan Polytechnic University)

  • Chong Xie

    (Beijing University of Chemical Technology)

  • Xiangxiao Meng

    (China Academy of Chinese Medical Sciences)

  • Yaolei Mi

    (China Academy of Chinese Medical Sciences)

  • Xiaotong Wang

    (Northeast Forestry University)

  • Caixia Wang

    (China Academy of Chinese Medical Sciences)

  • Weiqiang Chen

    (China Academy of Chinese Medical Sciences)

  • Ziyan Xie

    (Northeast Forestry University)

  • Zheyong Xue

    (Northeast Forestry University)

  • Hui Yao

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Peng Sun

    (China Academy of Chinese Medical Sciences
    China Academy of Chinese Medical Sciences)

  • Xuehua Xie

    (China Academy of Chinese Medical Sciences)

  • Zhigang Hu

    (Hubei University of Chinese Medicine)

  • David R. Nelson

    (University of Tennessee Health Science Center)

  • Zhichao Xu

    (Northeast Forestry University)

  • Xinxiao Sun

    (Beijing University of Chemical Technology)

  • Shilin Chen

    (China Academy of Chinese Medical Sciences
    Chengdu University of Traditional Chinese Medicine)

Abstract

Horse chestnut (Aesculus chinensis) is an important medicinal tree that contains various bioactive compounds, such as aescin, barrigenol-type triterpenoid saponins (BAT), and aesculin, a glycosylated coumarin. Herein, we report a 470.02 Mb genome assembly and characterize an Aesculus-specific whole-genome duplication event, which leads to the formation and duplication of two triterpenoid biosynthesis-related gene clusters (BGCs). We also show that AcOCS6, AcCYP716A278, AcCYP716A275, and AcCSL1 genes within these two BGCs along with a seed-specific expressed AcBAHD6 are responsible for the formation of aescin. Furthermore, we identify seven Aesculus-originated coumarin glycoside biosynthetic genes and achieve the de novo synthesis of aesculin in E. coli. Collinearity analysis shows that the collinear BGC segments can be traced back to early-diverging angiosperms, and the essential gene-encoding enzymes necessary for BAT biosynthesis are recruited before the splitting of Aesculus, Acer, and Xanthoceras. These findings provide insight on the evolution of gene clusters associated with medicinal tree metabolites.

Suggested Citation

  • Wei Sun & Qinggang Yin & Huihua Wan & Ranran Gao & Chao Xiong & Chong Xie & Xiangxiao Meng & Yaolei Mi & Xiaotong Wang & Caixia Wang & Weiqiang Chen & Ziyan Xie & Zheyong Xue & Hui Yao & Peng Sun & Xu, 2023. "Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42253-y
    DOI: 10.1038/s41467-023-42253-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42253-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42253-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenhua Liu & Jitender Cheema & Marielle Vigouroux & Lionel Hill & James Reed & Pirita Paajanen & Levi Yant & Anne Osbourn, 2020. "Formation and diversification of a paradigm biosynthetic gene cluster in plants," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Lichan Tu & Ping Su & Zhongren Zhang & Linhui Gao & Jiadian Wang & Tianyuan Hu & Jiawei Zhou & Yifeng Zhang & Yujun Zhao & Yuan Liu & Yadi Song & Yuru Tong & Yun Lu & Jian Yang & Cao Xu & Meirong Jia , 2020. "Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Yu Wang & He Zhang & Hyok Chol Ri & Zeyu An & Xin Wang & Jia-Nan Zhou & Dongran Zheng & Hao Wu & Pengchao Wang & Jianfei Yang & Ding-Kun Liu & Diyang Zhang & Wen-Chieh Tsai & Zheyong Xue & Zhichao Xu , 2022. "Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Soo Yeon Chung & Hikaru Seki & Yukiko Fujisawa & Yoshikazu Shimoda & Susumu Hiraga & Yuhta Nomura & Kazuki Saito & Masao Ishimoto & Toshiya Muranaka, 2020. "A cellulose synthase-derived enzyme catalyses 3-O-glucuronosylation in saponin biosynthesis," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Minghui Kang & Rao Fu & Pingyu Zhang & Shangling Lou & Xuchen Yang & Yang Chen & Tao Ma & Yang Zhang & Zhenxiang Xi & Jianquan Liu, 2021. "A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Karel Miettinen & Jacob Pollier & Dieter Buyst & Philipp Arendt & René Csuk & Sven Sommerwerk & Tessa Moses & Jan Mertens & Prashant D Sonawane & Laurens Pauwels & Asaph Aharoni & José Martins & David, 2017. "The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    7. Xiaofei Yang & Shenghan Gao & Li Guo & Bo Wang & Yanyan Jia & Jian Zhou & Yizhuo Che & Peng Jia & Jiadong Lin & Tun Xu & Jianyong Sun & Kai Ye, 2021. "Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    8. Yu Wang & He Zhang & Hyok Chol Ri & Zeyu An & Xin Wang & Jia-Nan Zhou & Dongran Zheng & Hao Wu & Pengchao Wang & Jianfei Yang & Ding-Kun Liu & Diyang Zhang & Wen-Chieh Tsai & Zheyong Xue & Zhichao Xu , 2022. "Author Correction: Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata," Nature Communications, Nature, vol. 13(1), pages 1-2, December.
    9. Ryota Akiyama & Bunta Watanabe & Masaru Nakayasu & Hyoung Jae Lee & Junpei Kato & Naoyuki Umemoto & Toshiya Muranaka & Kazuki Saito & Yukihiro Sugimoto & Masaharu Mizutani, 2021. "The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Lichan Tu & Ping Su & Zhongren Zhang & Linhui Gao & Jiadian Wang & Tianyuan Hu & Jiawei Zhou & Yifeng Zhang & Yujun Zhao & Yuan Liu & Yadi Song & Yuru Tong & Yun Lu & Jian Yang & Cao Xu & Meirong Jia , 2020. "Author Correction: Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Li & Bairu Li & Shaobin Gu & Xinyue Pang & Patrick Mason & Jiangfeng Yuan & Jingyu Jia & Jiaju Sun & Chunyan Zhao & Robert Henry, 2024. "Single-cell and spatial RNA sequencing reveal the spatiotemporal trajectories of fruit senescence," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao Yang & Ying Wu & Pan Zhang & Jianxiang Ma & Ying Jun Yao & Yan Lin Ma & Lei Zhang & Yongzhi Yang & Changmin Zhao & Jihua Wu & Xiangwen Fang & Jianquan Liu, 2023. "Multiple independent losses of the biosynthetic pathway for two tropane alkaloids in the Solanaceae family," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Abigail E. Bryson & Emily R. Lanier & Kin H. Lau & John P. Hamilton & Brieanne Vaillancourt & Davis Mathieu & Alan E. Yocca & Garret P. Miller & Patrick P. Edger & C. Robin Buell & Björn Hamberger, 2023. "Uncovering a miltiradiene biosynthetic gene cluster in the Lamiaceae reveals a dynamic evolutionary trajectory," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Nikolaj Lervad Hansen & Louise Kjaerulff & Quinn Kalby Heck & Victor Forman & Dan Staerk & Birger Lindberg Møller & Johan Andersen-Ranberg, 2022. "Tripterygium wilfordii cytochrome P450s catalyze the methyl shift and epoxidations in the biosynthesis of triptonide," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yu Wang & He Zhang & Hyok Chol Ri & Zeyu An & Xin Wang & Jia-Nan Zhou & Dongran Zheng & Hao Wu & Pengchao Wang & Jianfei Yang & Ding-Kun Liu & Diyang Zhang & Wen-Chieh Tsai & Zheyong Xue & Zhichao Xu , 2022. "Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Theresa Catania & Yi Li & Thilo Winzer & David Harvey & Fergus Meade & Anna Caridi & Andrew Leech & Tony R. Larson & Zemin Ning & Jiyang Chang & Yves Peer & Ian A. Graham, 2022. "A functionally conserved STORR gene fusion in Papaver species that diverged 16.8 million years ago," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Yifeng Zhang & Jie Gao & Lin Ma & Lichan Tu & Tianyuan Hu & Xiaoyi Wu & Ping Su & Yujun Zhao & Yuan Liu & Dan Li & Jiawei Zhou & Yan Yin & Yuru Tong & Huan Zhao & Yun Lu & Jiadian Wang & Wei Gao & Luq, 2023. "Tandemly duplicated CYP82Ds catalyze 14-hydroxylation in triptolide biosynthesis and precursor production in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Xiao Feng & Qipian Chen & Weihong Wu & Jiexin Wang & Guohong Li & Shaohua Xu & Shao Shao & Min Liu & Cairong Zhong & Chung-I Wu & Suhua Shi & Ziwen He, 2024. "Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Xiaoyue Chen & Graham A. Hudson & Charlotte Mineo & Bashar Amer & Edward E. K. Baidoo & Samantha A. Crowe & Yuzhong Liu & Jay D. Keasling & Henrik V. Scheller, 2023. "Deciphering triterpenoid saponin biosynthesis by leveraging transcriptome response to methyl jasmonate elicitation in Saponaria vaccaria," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Yongming Liu & Gengxin Xie & Qichang Yang & Maozhi Ren, 2021. "Biotechnological development of plants for space agriculture," Nature Communications, Nature, vol. 12(1), pages 1-3, December.
    11. Xiaofei Yang & Shenghan Gao & Li Guo & Bo Wang & Yanyan Jia & Jian Zhou & Yizhuo Che & Peng Jia & Jiadong Lin & Tun Xu & Jianyong Sun & Kai Ye, 2021. "Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    12. Ren-Gang Zhang & Chaoxia Lu & Guang-Yuan Li & Jie Lv & Longxin Wang & Zhao-Xuan Wang & Zhe Chen & Dan Liu & Ye Zhao & Tian-Le Shi & Wei Zhang & Zhao-Hui Tang & Jian-Feng Mao & Yong-Peng Ma & Kai-Hua J, 2023. "Subgenome-aware analyses suggest a reticulate allopolyploidization origin in three Papaver genomes," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    13. Xiaofei Yang & Shenghan Gao & Tun Xu & Bo Wang & Yanyan Jia & Kai Ye, 2023. "Reply to “Subgenome-aware analyses suggest a reticulate allopolyploidization origin in three Papaver genomes”," Nature Communications, Nature, vol. 14(1), pages 1-2, December.
    14. Nanqiao Liao & Zhongyuan Hu & Jinshan Miao & Xiaodi Hu & Xiaolong Lyu & Haitian Fang & Yi-Mei Zhou & Ahmed Mahmoud & Guancong Deng & Yi-Qing Meng & Kejia Zhang & Yu-Yuan Ma & Yuelin Xia & Meng Zhao & , 2022. "Chromosome-level genome assembly of bunching onion illuminates genome evolution and flavor formation in Allium crops," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Fangyuan Zhang & Fei Qiu & Junlan Zeng & Zhichao Xu & Yueli Tang & Tengfei Zhao & Yuqin Gou & Fei Su & Shiyi Wang & Xiuli Sun & Zheyong Xue & Weixing Wang & Chunxian Yang & Lingjiang Zeng & Xiaozhong , 2023. "Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Jiadong Hu & Shi Qiu & Feiyan Wang & Qing Li & Chun-Lei Xiang & Peng Di & Ziding Wu & Rui Jiang & Jinxing Li & Zhen Zeng & Jing Wang & Xingxing Wang & Yuchen Zhang & Shiyuan Fang & Yuqi Qiao & Jie Din, 2023. "Functional divergence of CYP76AKs shapes the chemodiversity of abietane-type diterpenoids in genus Salvia," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Wei Yuan & Chenjian Jiang & Qin Wang & Yubo Fang & Jin Wang & Meng Wang & Han Xiao, 2022. "Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42253-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.