IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41430-3.html
   My bibliography  Save this article

Dislocation interactions during plastic relaxation of epitaxial colloidal crystals

Author

Listed:
  • Ilya Svetlizky

    (Harvard University)

  • Seongsoo Kim

    (Harvard University)

  • David A. Weitz

    (Harvard University
    Harvard University
    Harvard University)

  • Frans Spaepen

    (Harvard University)

Abstract

The severe difficulty to resolve simultaneously both the macroscopic deformation process and the dislocation dynamics on the atomic scale limits our understanding of crystal plasticity. Here we use colloidal crystals, imaged on the single particle level by high-speed three-dimensional (3D) confocal microscopy, and resolve in real-time both the relaxation of the epitaxial misfit strain and the accompanying evolution of dislocations. We show how dislocation interactions give rise to the formation of complex dislocation networks in 3D and to unexpectedly sharp plastic relaxation. The sharp relaxation is facilitated by attractive interactions that promote the formation of new dislocations that are more efficient in mediating strain. Dislocation networks form fragmented structures, as dislocation growth is blocked by either attractive interactions, which result in the formation of sessile dislocation junctions, or by repulsion from perpendicular segments. The strength of these blocking mechanisms decreases with the thickness of the crystal film. These results reveal the critical role of dislocation interactions in plastic deformation of thin films and can be readily generalized from the colloidal to the atomic scale.

Suggested Citation

  • Ilya Svetlizky & Seongsoo Kim & David A. Weitz & Frans Spaepen, 2023. "Dislocation interactions during plastic relaxation of epitaxial colloidal crystals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41430-3
    DOI: 10.1038/s41467-023-41430-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41430-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41430-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alfons van Blaaderen & Rene Ruel & Pierre Wiltzius, 1997. "Template-directed colloidal crystallization," Nature, Nature, vol. 385(6614), pages 321-324, January.
    2. William T. M. Irvine & Vincenzo Vitelli & Paul M. Chaikin, 2010. "Pleats in crystals on curved surfaces," Nature, Nature, vol. 468(7326), pages 947-951, December.
    3. Yurii A. Vlasov & Xiang-Zheng Bo & James C. Sturm & David J. Norris, 2001. "On-chip natural assembly of silicon photonic bandgap crystals," Nature, Nature, vol. 414(6861), pages 289-293, November.
    4. B. Dam & J. M. Huijbregtse & F. C. Klaassen & R. C. F. van der Geest & G. Doornbos & J. H. Rector & A. M. Testa & S. Freisem & J. C. Martinez & B. Stäuble-Pümpin & R. Griessen, 1999. "Origin of high critical currents in YBa2Cu3O7−δ superconducting thin films," Nature, Nature, vol. 399(6735), pages 439-442, June.
    5. Harald Brune & Marcella Giovannini & Karsten Bromann & Klaus Kern, 1998. "Self-organized growth of nanostructure arrays on strain-relief patterns," Nature, Nature, vol. 394(6692), pages 451-453, July.
    6. Jixiang Zhu & Min Li & R. Rogers & W. Meyer & R. H. Ottewill & W. B. Russel & P. M. Chaikin, 1997. "Crystallization of hard-sphere colloids in microgravity," Nature, Nature, vol. 387(6636), pages 883-885, June.
    7. Peter Schall & Itai Cohen & David A. Weitz & Frans Spaepen, 2006. "Visualizing dislocation nucleation by indenting colloidal crystals," Nature, Nature, vol. 440(7082), pages 319-323, March.
    8. Yimu Chen & Yusheng Lei & Yuheng Li & Yugang Yu & Jinze Cai & Ming-Hui Chiu & Rahul Rao & Yue Gu & Chunfeng Wang & Woojin Choi & Hongjie Hu & Chonghe Wang & Yang Li & Jiawei Song & Jingxin Zhang & Bai, 2020. "Strain engineering and epitaxial stabilization of halide perovskites," Nature, Nature, vol. 577(7789), pages 209-215, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piet J. M. Swinkels & Zhe Gong & Stefano Sacanna & Eva G. Noya & Peter Schall, 2023. "Visualizing defect dynamics by assembling the colloidal graphene lattice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Julian A. Steele & Tom Braeckevelt & Vittal Prakasam & Giedrius Degutis & Haifeng Yuan & Handong Jin & Eduardo Solano & Pascal Puech & Shreya Basak & Maria Isabel Pintor-Monroy & Hans Gorp & Guillaume, 2022. "An embedded interfacial network stabilizes inorganic CsPbI3 perovskite thin films," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Fangping Zhuo & Xiandong Zhou & Shuang Gao & Marion Höfling & Felix Dietrich & Pedro B. Groszewicz & Lovro Fulanović & Patrick Breckner & Andreas Wohninsland & Bai-Xiang Xu & Hans-Joachim Kleebe & Xia, 2022. "Anisotropic dislocation-domain wall interactions in ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Minxia Jiang & Yingjie Hu & Baoguang Mao & Yixin Wang & Zhen Yang & Tao Meng & Xin Wang & Minhua Cao, 2022. "Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Da Liu & Yichu Zheng & Xin Yuan Sui & Xue Feng Wu & Can Zou & Yu Peng & Xinyi Liu & Miaoyu Lin & Zhanpeng Wei & Hang Zhou & Ye-Feng Yao & Sheng Dai & Haiyang Yuan & Hua Gui Yang & Shuang Yang & Yu Hou, 2024. "Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Yuhang Liang & Feng Li & Xiangyuan Cui & Taoyuze Lv & Catherine Stampfl & Simon P. Ringer & Xudong Yang & Jun Huang & Rongkun Zheng, 2024. "Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Plans, I. & Carpio, A. & Bonilla, L.L., 2009. "Toy nanoindentation model and incipient plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1623-1630.
    8. Jooyeun Chong & Changhoon Sung & Kum Seok Nam & Taewon Kang & Hyunjun Kim & Haeseung Lee & Hyunchang Park & Seongjun Park & Jiheong Kang, 2023. "Highly conductive tissue-like hydrogel interface through template-directed assembly," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Jin, Yuliang & Makse, Hernán A., 2010. "A first-order phase transition defines the random close packing of hard spheres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5362-5379.
    10. Xinlong Wang & Zhiqin Ying & Jingming Zheng & Xin Li & Zhipeng Zhang & Chuanxiao Xiao & Ying Chen & Ming Wu & Zhenhai Yang & Jingsong Sun & Jia-Ru Xu & Jiang Sheng & Yuheng Zeng & Xi Yang & Guichuan X, 2023. "Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Amore, Paolo & Jacobo, Martin, 2019. "Thomson problem in one dimension: Minimal energy configurations of N charges on a curve," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 256-266.
    12. Fan Cui & Sophie Marbach & Jeana Aojie Zheng & Miranda Holmes-Cerfon & David J. Pine, 2022. "Comprehensive view of microscopic interactions between DNA-coated colloids," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41430-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.