IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41377-5.html
   My bibliography  Save this article

Engineering the temporal dynamics of all-optical switching with fast and slow materials

Author

Listed:
  • Soham Saha

    (Purdue University
    Argonne National Laboratory)

  • Benjamin T. Diroll

    (Argonne National Laboratory)

  • Mustafa Goksu Ozlu

    (Purdue University)

  • Sarah N. Chowdhury

    (Purdue University)

  • Samuel Peana

    (Purdue University)

  • Zhaxylyk Kudyshev

    (Purdue University)

  • Richard D. Schaller

    (Argonne National Laboratory)

  • Zubin Jacob

    (Purdue University
    Purdue University)

  • Vladimir M. Shalaev

    (Purdue University
    Purdue University)

  • Alexander V. Kildishev

    (Purdue University
    Purdue University)

  • Alexandra Boltasseva

    (Purdue University
    Purdue University)

Abstract

All-optical switches control the amplitude, phase, and polarization of light using optical control pulses. They can operate at ultrafast timescales – essential for technology-driven applications like optical computing, and fundamental studies like time-reflection. Conventional all-optical switches have a fixed switching time, but this work demonstrates that the response-time can be controlled by selectively controlling the light-matter-interaction in so-called fast and slow materials. The bi-material switch has a nanosecond response when the probe interacts strongly with titanium nitride near its epsilon-near-zero (ENZ) wavelength. The response-time speeds up over two orders of magnitude with increasing probe-wavelength, as light’s interaction with the faster Aluminum-doped zinc oxide (AZO) increases, eventually reaching the picosecond-scale near AZO’s ENZ-regime. This scheme provides several additional degrees of freedom for switching time control, such as probe-polarization and incident angle, and the pump-wavelength. This approach could lead to new functionalities within key applications in multiband transmission, optical computing, and nonlinear optics.

Suggested Citation

  • Soham Saha & Benjamin T. Diroll & Mustafa Goksu Ozlu & Sarah N. Chowdhury & Samuel Peana & Zhaxylyk Kudyshev & Richard D. Schaller & Zubin Jacob & Vladimir M. Shalaev & Alexander V. Kildishev & Alexan, 2023. "Engineering the temporal dynamics of all-optical switching with fast and slow materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41377-5
    DOI: 10.1038/s41467-023-41377-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41377-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41377-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ehsan Arbabi & Amir Arbabi & Seyedeh Mahsa Kamali & Yu Horie & MohammadSadegh Faraji-Dana & Andrei Faraon, 2018. "MEMS-tunable dielectric metasurface lens," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. M. Clerici & N. Kinsey & C. DeVault & J. Kim & E. G. Carnemolla & L. Caspani & A. Shaltout & D. Faccio & V. Shalaev & A. Boltasseva & M. Ferrera, 2017. "Correction: Corrigendum: Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    3. Justus Bohn & Ting Shan Luk & Craig Tollerton & Sam W. Hutchings & Igal Brener & Simon Horsley & William L. Barnes & Euan Hendry, 2021. "All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    4. M. Clerici & N. Kinsey & C. DeVault & J. Kim & E. G. Carnemolla & L. Caspani & A. Shaltout & D. Faccio & V. Shalaev & A. Boltasseva & M. Ferrera, 2017. "Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    5. Maxim R. Shcherbakov & Sheng Liu & Varvara V. Zubyuk & Aleksandr Vaskin & Polina P. Vabishchevich & Gordon Keeler & Thomas Pertsch & Tatyana V. Dolgova & Isabelle Staude & Igal Brener & Andrey A. Fedy, 2017. "Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geng-Bo Wu & Jun Yan Dai & Kam Man Shum & Ka Fai Chan & Qiang Cheng & Tie Jun Cui & Chi Hou Chan, 2023. "A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Wallace Jaffray & Federico Belli & Enrico G. Carnemolla & Catalina Dobas & Mark Mackenzie & John Travers & Ajoy K. Kar & Matteo Clerici & Clayton DeVault & Vladimir M. Shalaev & Alexandra Boltasseva &, 2022. "Near-zero-index ultra-fast pulse characterization," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Sajjad Abdollahramezani & Omid Hemmatyar & Mohammad Taghinejad & Hossein Taghinejad & Alex Krasnok & Ali A. Eftekhar & Christian Teichrib & Sanchit Deshmukh & Mostafa A. El-Sayed & Eric Pop & Matthias, 2022. "Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Arrigo Calzolari & Corey Oses & Cormac Toher & Marco Esters & Xiomara Campilongo & Sergei P. Stepanoff & Douglas E. Wolfe & Stefano Curtarolo, 2022. "Plasmonic high-entropy carbides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Artem Sinelnik & Shiu Hei Lam & Filippo Coviello & Sebastian Klimmer & Giuseppe Valle & Duk-Yong Choi & Thomas Pertsch & Giancarlo Soavi & Isabelle Staude, 2024. "Ultrafast all-optical second harmonic wavefront shaping," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Huan Lu & Jiwei Zhao & Bin Zheng & Chao Qian & Tong Cai & Erping Li & Hongsheng Chen, 2023. "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41377-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.