IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41257-y.html
   My bibliography  Save this article

Coupled reaction equilibria enable the light-driven formation of metal-functionalized molecular vanadium oxides

Author

Listed:
  • Stefan Repp

    (Ulm University)

  • Moritz Remmers

    (Johannes Gutenberg University Mainz)

  • Alexandra Stefanie Jessica Rein

    (Ulm University)

  • Dieter Sorsche

    (Ulm University)

  • Dandan Gao

    (Johannes Gutenberg University Mainz)

  • Montaha Anjass

    (Ulm University
    University of Sharjah)

  • Mihail Mondeshki

    (Johannes Gutenberg University Mainz)

  • Luca M. Carrella

    (Johannes Gutenberg University Mainz)

  • Eva Rentschler

    (Johannes Gutenberg University Mainz)

  • Carsten Streb

    (Ulm University
    Johannes Gutenberg University Mainz)

Abstract

The introduction of metal sites into molecular metal oxides, so-called polyoxometalates, is key for tuning their structure and reactivity. The complex mechanisms which govern metal-functionalization of polyoxometalates are still poorly understood. Here, we report a coupled set of light-dependent and light-independent reaction equilibria controlling the mono- and di-metal-functionalization of a prototype molecular vanadium oxide cluster. Comprehensive mechanistic analyses show that coordination of a Mg2+ ion to the species {(NMe2H2)2[VV12O32Cl]}3- results in formation of the mono-functionalized {(NMe2H2)[(MgCl)VV12O32Cl]}3- with simultaneous release of a NMe2H2+ placeholder cation. Irradiation of this species with visible light results in one-electron reduction of the vanadate, exchange of the second NMe2H2+ with Mg2+, and formation/crystallization of the di-metal-functionalized [(MgCl)2VIVVV11O32Cl]4-. Mechanistic studies show how stimuli such as light or competing cations affect the coupled equilibria. Transfer of this synthetic concept to other metal cations is also demonstrated, highlighting the versatility of the approach.

Suggested Citation

  • Stefan Repp & Moritz Remmers & Alexandra Stefanie Jessica Rein & Dieter Sorsche & Dandan Gao & Montaha Anjass & Mihail Mondeshki & Luca M. Carrella & Eva Rentschler & Carsten Streb, 2023. "Coupled reaction equilibria enable the light-driven formation of metal-functionalized molecular vanadium oxides," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41257-y
    DOI: 10.1038/s41467-023-41257-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41257-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41257-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Muhandis Shiddiq & Dorsa Komijani & Yan Duan & Alejandro Gaita-Ariño & Eugenio Coronado & Stephen Hill, 2016. "Enhancing coherence in molecular spin qubits via atomic clock transitions," Nature, Nature, vol. 531(7594), pages 348-351, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jon G. C. Kragskow & Jonathan Marbey & Christian D. Buch & Joscha Nehrkorn & Mykhaylo Ozerov & Stergios Piligkos & Stephen Hill & Nicholas F. Chilton, 2022. "Analysis of vibronic coupling in a 4f molecular magnet with FIRMS," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Tolulope Michael Ajayi & Vijay Singh & Kyaw Zin Latt & Sanjoy Sarkar & Xinyue Cheng & Sineth Premarathna & Naveen K. Dandu & Shaoze Wang & Fahimeh Movahedifar & Sarah Wieghold & Nozomi Shirato & Volke, 2022. "Atomically precise control of rotational dynamics in charged rare-earth complexes on a metal surface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Gheorghe Taran & Eufemio Moreno-Pineda & Michael Schulze & Edgar Bonet & Mario Ruben & Wolfgang Wernsdorfer, 2023. "Direct determination of high-order transverse ligand field parameters via µSQUID-EPR in a Et4N[160GdPc2] SMM," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41257-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.