IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40541-1.html
   My bibliography  Save this article

A HIF independent oxygen-sensitive pathway for controlling cholesterol synthesis

Author

Listed:
  • Anna S. Dickson

    (University of Cambridge)

  • Tekle Pauzaite

    (University of Cambridge)

  • Esther Arnaiz

    (University of Cambridge
    Ochre-Bio Ltd)

  • Brian M. Ortmann

    (University of Cambridge
    Newcastle University, Herschel Building, Level 6)

  • James A. West

    (University of Cambridge)

  • Norbert Volkmar

    (University of Cambridge
    Institute for Molecular Systems Biology (IMSB), ETH Zürich
    DISCO Pharmaceuticals Swiss GmbH, ETH Zürich)

  • Anthony W. Martinelli

    (University of Cambridge)

  • Zhaoqi Li

    (Massachusetts Institute of Technology
    Tango Therapeutics)

  • Niek Wit

    (University of Cambridge)

  • Dennis Vitkup

    (Columbia University
    Columbia University)

  • Arthur Kaser

    (University of Cambridge)

  • Paul J. Lehner

    (University of Cambridge)

  • James A. Nathan

    (University of Cambridge)

Abstract

Cholesterol biosynthesis is a highly regulated, oxygen-dependent pathway, vital for cell membrane integrity and growth. In fungi, the dependency on oxygen for sterol production has resulted in a shared transcriptional response, resembling prolyl hydroxylation of Hypoxia Inducible Factors (HIFs) in metazoans. Whether an analogous metazoan pathway exists is unknown. Here, we identify Sterol Regulatory Element Binding Protein 2 (SREBP2), the key transcription factor driving sterol production in mammals, as an oxygen-sensitive regulator of cholesterol synthesis. SREBP2 degradation in hypoxia overrides the normal sterol-sensing response, and is HIF independent. We identify MARCHF6, through its NADPH-mediated activation in hypoxia, as the main ubiquitin ligase controlling SREBP2 stability. Hypoxia-mediated degradation of SREBP2 protects cells from statin-induced cell death by forcing cells to rely on exogenous cholesterol uptake, explaining why many solid organ tumours become auxotrophic for cholesterol. Our findings therefore uncover an oxygen-sensitive pathway for governing cholesterol synthesis through regulated SREBP2-dependent protein degradation.

Suggested Citation

  • Anna S. Dickson & Tekle Pauzaite & Esther Arnaiz & Brian M. Ortmann & James A. West & Norbert Volkmar & Anthony W. Martinelli & Zhaoqi Li & Niek Wit & Dennis Vitkup & Arthur Kaser & Paul J. Lehner & J, 2023. "A HIF independent oxygen-sensitive pathway for controlling cholesterol synthesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40541-1
    DOI: 10.1038/s41467-023-40541-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40541-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40541-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Javier Garcia-Bermudez & Lou Baudrier & Erol Can Bayraktar & Yihui Shen & Konnor La & Rohiverth Guarecuco & Burcu Yucel & Danilo Fiore & Bernardo Tavora & Elizaveta Freinkman & Sze Ham Chan & Caroline, 2019. "Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death," Nature, Nature, vol. 567(7746), pages 118-122, March.
    2. Richard T. Timms & Sam A. Menzies & Iva A. Tchasovnikarova & Lea C. Christensen & James C. Williamson & Robin Antrobus & Gordon Dougan & Lars Ellgaard & Paul J. Lehner, 2016. "Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    3. David W. Morgens & Michael Wainberg & Evan A. Boyle & Oana Ursu & Carlos L. Araya & C. Kimberly Tsui & Michael S. Haney & Gaelen T. Hess & Kyuho Han & Edwin E. Jeng & Amy Li & Michael P. Snyder & Will, 2017. "Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel M. Álvarez & Josep Biayna & Fran Supek, 2022. "TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Morgane Boone & Pathmanaban Ramasamy & Jasper Zuallaert & Robbin Bouwmeester & Berre Moer & Davy Maddelein & Demet Turan & Niels Hulstaert & Hannah Eeckhaut & Elien Vandermarliere & Lennart Martens & , 2021. "Massively parallel interrogation of protein fragment secretability using SECRiFY reveals features influencing secretory system transit," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Xiaolong Cheng & Zexu Li & Ruocheng Shan & Zihan Li & Shengnan Wang & Wenchang Zhao & Han Zhang & Lumen Chao & Jian Peng & Teng Fei & Wei Li, 2023. "Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Guoshu Bi & Jiaqi Liang & Yunyi Bian & Guangyao Shan & Yiwei Huang & Tao Lu & Huan Zhang & Xing Jin & Zhencong Chen & Mengnan Zhao & Hong Fan & Qun Wang & Boyi Gan & Cheng Zhan, 2024. "Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Malgorzata J. Latallo & Shaopeng Wang & Daoyuan Dong & Blake Nelson & Nathan M. Livingston & Rong Wu & Ning Zhao & Timothy J. Stasevich & Michael C. Bassik & Shuying Sun & Bin Wu, 2023. "Single-molecule imaging reveals distinct elongation and frameshifting dynamics between frames of expanded RNA repeats in C9ORF72-ALS/FTD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Gemma Noviello & Rutger A. F. Gjaltema & Edda G. Schulz, 2023. "CasTuner is a degron and CRISPR/Cas-based toolkit for analog tuning of endogenous gene expression," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Ian D. Ferguson & Bonell Patiño-Escobar & Sami T. Tuomivaara & Yu-Hsiu T. Lin & Matthew A. Nix & Kevin K. Leung & Corynn Kasap & Emilio Ramos & Wilson Nieves Vasquez & Alexis Talbot & Martina Hale & A, 2022. "The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Marsha M. Wheeler & Adrienne M. Stilp & Shuquan Rao & Bjarni V. Halldórsson & Doruk Beyter & Jia Wen & Anna V. Mihkaylova & Caitlin P. McHugh & John Lane & Min-Zhi Jiang & Laura M. Raffield & Goo Jun , 2022. "Whole genome sequencing identifies structural variants contributing to hematologic traits in the NHLBI TOPMed program," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40541-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.