IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40531-3.html
   My bibliography  Save this article

Integrin β3 directly inhibits the Gα13-p115RhoGEF interaction to regulate G protein signaling and platelet exocytosis

Author

Listed:
  • Yaping Zhang

    (University of Illinois at Chicago)

  • Xiaojuan Zhao

    (University of Illinois at Chicago)

  • Bo Shen

    (University of Illinois at Chicago)

  • Yanyan Bai

    (University of Illinois at Chicago)

  • Claire Chang

    (University of Illinois at Chicago)

  • Aleksandra Stojanovic

    (University of Illinois at Chicago
    Dupage Medical Technology, Inc.)

  • Can Wang

    (University of Illinois at Chicago)

  • Andrew Mack

    (University of Illinois at Chicago)

  • Gary Deng

    (Eli Lilly)

  • Randal A. Skidgel

    (Dupage Medical Technology, Inc.)

  • Ni Cheng

    (University of Illinois at Chicago)

  • Xiaoping Du

    (University of Illinois at Chicago)

Abstract

The integrins and G protein-coupled receptors are both fundamental in cell biology. The cross talk between these two, however, is unclear. Here we show that β3 integrins negatively regulate G protein-coupled signaling by directly inhibiting the Gα13-p115RhoGEF interaction. Furthermore, whereas β3 deficiency or integrin antagonists inhibit integrin-dependent platelet aggregation and exocytosis (granule secretion), they enhance G protein-coupled RhoA activation and integrin-independent secretion. In contrast, a β3-derived Gα13-binding peptide or Gα13 knockout inhibits G protein-coupled RhoA activation and both integrin-independent and dependent platelet secretion without affecting primary platelet aggregation. In a mouse model of myocardial ischemia/reperfusion injury in vivo, the β3-derived Gα13-binding peptide inhibits platelet secretion of granule constituents, which exacerbates inflammation and ischemia/reperfusion injury. These data establish crucial integrin-G protein crosstalk, providing a rationale for therapeutic approaches that inhibit exocytosis in platelets and possibly other cells without adverse effects associated with loss of cell adhesion.

Suggested Citation

  • Yaping Zhang & Xiaojuan Zhao & Bo Shen & Yanyan Bai & Claire Chang & Aleksandra Stojanovic & Can Wang & Andrew Mack & Gary Deng & Randal A. Skidgel & Ni Cheng & Xiaoping Du, 2023. "Integrin β3 directly inhibits the Gα13-p115RhoGEF interaction to regulate G protein signaling and platelet exocytosis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40531-3
    DOI: 10.1038/s41467-023-40531-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40531-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40531-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Zhu & Jun Yang & Thomas Bromberger & Ashley Holly & Fan Lu & Huan Liu & Kevin Sun & Sarah Klapproth & Jamila Hirbawi & Tatiana V. Byzova & Edward F. Plow & Markus Moser & Jun Qin, 2017. "Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    2. Bo Shen & Xiaojuan Zhao & Kelly A. O’Brien & Aleksandra Stojanovic-Terpo & M. Keegan Delaney & Kyungho Kim & Jaehyung Cho & Stephen C.-T. Lam & Xiaoping Du, 2013. "A directional switch of integrin signalling and a new anti-thrombotic strategy," Nature, Nature, vol. 503(7474), pages 131-135, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Sawako Yamashiro & David M. Rutkowski & Kelli Ann Lynch & Ying Liu & Dimitrios Vavylonis & Naoki Watanabe, 2023. "Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Yangyang Ding & Xiang Gui & Xiang Chu & Yueyue Sun & Sixuan Zhang & Huan Tong & Wen Ju & Yue Li & Zengtian Sun & Mengdi Xu & Zhenyu Li & Robert K. Andrews & Elizabeth E. Gardiner & Lingyu Zeng & Kaili, 2023. "MTH1 protects platelet mitochondria from oxidative damage and regulates platelet function and thrombosis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40531-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.