IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39656-2.html
   My bibliography  Save this article

Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours

Author

Listed:
  • F. Hassani

    (Institute of Science and Technology Austria)

  • M. Peruzzo

    (Institute of Science and Technology Austria)

  • L. N. Kapoor

    (Institute of Science and Technology Austria)

  • A. Trioni

    (Institute of Science and Technology Austria)

  • M. Zemlicka

    (Institute of Science and Technology Austria)

  • J. M. Fink

    (Institute of Science and Technology Austria)

Abstract

Currently available quantum processors are dominated by noise, which severely limits their applicability and motivates the search for new physical qubit encodings. In this work, we introduce the inductively shunted transmon, a weakly flux-tunable superconducting qubit that offers charge offset protection for all levels and a 20-fold reduction in flux dispersion compared to the state-of-the-art resulting in a constant coherence over a full flux quantum. The parabolic confinement provided by the inductive shunt as well as the linearity of the geometric superinductor facilitates a high-power readout that resolves quantum jumps with a fidelity and QND-ness of >90% and without the need for a Josephson parametric amplifier. Moreover, the device reveals quantum tunneling physics between the two prepared fluxon ground states with a measured average decay time of up to 3.5 h. In the future, fast time-domain control of the transition matrix elements could offer a new path forward to also achieve full qubit control in the decay-protected fluxon basis.

Suggested Citation

  • F. Hassani & M. Peruzzo & L. N. Kapoor & A. Trioni & M. Zemlicka & J. M. Fink, 2023. "Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39656-2
    DOI: 10.1038/s41467-023-39656-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39656-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39656-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivan V. Pechenezhskiy & Raymond A. Mencia & Long B. Nguyen & Yen-Hsiang Lin & Vladimir E. Manucharyan, 2020. "The superconducting quasicharge qubit," Nature, Nature, vol. 585(7825), pages 368-371, September.
    2. Ramón Ramos & David Spierings & Isabelle Racicot & Aephraim M. Steinberg, 2020. "Measurement of the time spent by a tunnelling atom within the barrier region," Nature, Nature, vol. 583(7817), pages 529-532, July.
    3. Jonathan R. Friedman & Vijay Patel & W. Chen & S. K. Tolpygo & J. E. Lukens, 2000. "Quantum superposition of distinct macroscopic states," Nature, Nature, vol. 406(6791), pages 43-46, July.
    4. Ioan M. Pop & Kurtis Geerlings & Gianluigi Catelani & Robert J. Schoelkopf & Leonid I. Glazman & Michel H. Devoret, 2014. "Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles," Nature, Nature, vol. 508(7496), pages 369-372, April.
    5. A. Wallraff & D. I. Schuster & A. Blais & L. Frunzio & R.- S. Huang & J. Majer & S. Kumar & S. M. Girvin & R. J. Schoelkopf, 2004. "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature, Nature, vol. 431(7005), pages 162-167, September.
    6. Y. Nakamura & Yu. A. Pashkin & J. S. Tsai, 1999. "Coherent control of macroscopic quantum states in a single-Cooper-pair box," Nature, Nature, vol. 398(6730), pages 786-788, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianchuang Pan & Yuxuan Zhou & Haolan Yuan & Lifu Nie & Weiwei Wei & Libo Zhang & Jian Li & Song Liu & Zhi Hao Jiang & Gianluigi Catelani & Ling Hu & Fei Yan & Dapeng Yu, 2022. "Engineering superconducting qubits to reduce quasiparticles and charge noise," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Shuai-Peng Wang & Alessandro Ridolfo & Tiefu Li & Salvatore Savasta & Franco Nori & Y. Nakamura & J. Q. You, 2023. "Probing the symmetry breaking of a light–matter system by an ancillary qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    3. Eric Hyyppä & Suman Kundu & Chun Fai Chan & András Gunyhó & Juho Hotari & David Janzso & Kristinn Juliusson & Olavi Kiuru & Janne Kotilahti & Alessandro Landra & Wei Liu & Fabian Marxer & Akseli Mäkin, 2022. "Unimon qubit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Dahbi, Zakaria & Rahman, Atta Ur & Mansour, Mostafa, 2023. "Skew information correlations and local quantum Fisher information in two gravitational cat states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Hu, Gaoke & Liu, Maoxin & Chen, Xiaosong, 2023. "Quantum phase transition and eigen microstate condensation in the quantum Rabi model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    6. C. G. L. Bøttcher & S. P. Harvey & S. Fallahi & G. C. Gardner & M. J. Manfra & U. Vool & S. D. Bartlett & A. Yacoby, 2022. "Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Atsushi Sakaguchi & Shunya Konno & Fumiya Hanamura & Warit Asavanant & Kan Takase & Hisashi Ogawa & Petr Marek & Radim Filip & Jun-ichi Yoshikawa & Elanor Huntington & Hidehiro Yonezawa & Akira Furusa, 2023. "Nonlinear feedforward enabling quantum computation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Samadi, Ali Hussein & Montakhab, Afshin & Marzban, Hussein & Owjimehr, Sakine, 2018. "Quantum Barro–Gordon game in monetary economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 94-101.
    9. Ya. S. Greenberg & O. A. Chuikin, 2022. "Superradiant emission spectra of a two-qubit system in circuit quantum electrodynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-19, September.
    10. guo, wei, 2023. "Uncover rigorous application range of phenomena measure method to avoid adding extra unverifiable things into reality for explaining measured discrepancy," OSF Preprints xc4wr, Center for Open Science.
    11. Diego Subero & Olivier Maillet & Dmitry S. Golubev & George Thomas & Joonas T. Peltonen & Bayan Karimi & Marco Marín-Suárez & Alfredo Levy Yeyati & Rafael Sánchez & Sunghun Park & Jukka P. Pekola, 2023. "Bolometric detection of Josephson inductance in a highly resistive environment," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Slaoui, Abdallah & Salah, Ahmed & Daoud, Mohammed, 2020. "Influence of Stark-shift on quantum coherence and non-classical correlations for two two-level atoms interacting with a single-mode cavity field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    13. Johannes Koch & Geram R. Hunanyan & Till Ockenfels & Enrique Rico & Enrique Solano & Martin Weitz, 2023. "Quantum Rabi dynamics of trapped atoms far in the deep strong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Abdel-Khalek, S. & Berrada, K. & Aldaghfag, Shatha A., 2021. "Quantum correlations and non-classical properties for two superconducting qubits interacting with a quantized field in the context of deformed Heisenberg algebra," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Gupta, Shivam & Modgil, Sachin & Bhatt, Priyanka C. & Chiappetta Jabbour, Charbel Jose & Kamble, Sachin, 2023. "Quantum computing led innovation for achieving a more sustainable Covid-19 healthcare industry," Technovation, Elsevier, vol. 120(C).
    16. Yu Zhou & Zhenxing Zhang & Zelong Yin & Sainan Huai & Xiu Gu & Xiong Xu & Jonathan Allcock & Fuming Liu & Guanglei Xi & Qiaonian Yu & Hualiang Zhang & Mengyu Zhang & Hekang Li & Xiaohui Song & Zhan Wa, 2021. "Rapid and unconditional parametric reset protocol for tunable superconducting qubits," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    17. Humire, Fernando R. & Zárate, Yair D. & Joglekar, Yogesh N. & García-Ñustes, Mónica A., 2023. "Classical Rabi oscillations induced by unbalanced dissipation on a nonlinear dimer," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    18. Daisuke Iyama & Takahiko Kamiya & Shiori Fujii & Hiroto Mukai & Yu Zhou & Toshiaki Nagase & Akiyoshi Tomonaga & Rui Wang & Jiao-Jiao Xue & Shohei Watabe & Sangil Kwon & Jaw-Shen Tsai, 2024. "Observation and manipulation of quantum interference in a superconducting Kerr parametric oscillator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Skagerstam, Bo-Sture K., 2006. "On collective effects in cavity quantum electrodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 314-326.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39656-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.