IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39652-6.html
   My bibliography  Save this article

Blood transcriptomic signatures associated with molecular changes in the brain and clinical outcomes in Parkinson’s disease

Author

Listed:
  • Krithi Irmady

    (The Rockefeller University)

  • Caryn R. Hale

    (The Rockefeller University)

  • Rizwana Qadri

    (The Rockefeller University)

  • John Fak

    (The Rockefeller University)

  • Sitsandziwe Simelane

    (The Rockefeller University)

  • Thomas Carroll

    (The Rockefeller University)

  • Serge Przedborski

    (Columbia University
    Columbia University
    Columbia University)

  • Robert B. Darnell

    (The Rockefeller University
    The Rockefeller University)

Abstract

The ability to use blood to predict the outcomes of Parkinson’s disease, including disease progression and cognitive and motor complications, would be of significant clinical value. We undertook bulk RNA sequencing from the caudate and putamen of postmortem Parkinson’s disease (n = 35) and control (n = 40) striatum, and compared molecular profiles with clinical features and bulk RNA sequencing data obtained from antemortem peripheral blood. Cognitive and motor complications of Parkinson’s disease were associated with molecular changes in the caudate (stress response) and putamen (endothelial pathways) respectively. Later and earlier-onset Parkinson’s disease were molecularly distinct, and disease duration was associated with changes in caudate (oligodendrocyte development) and putamen (cellular senescence), respectively. Transcriptome patterns in the postmortem Parkinson’s disease brain were also evident in antemortem peripheral blood, and correlated with clinical features of the disease. Together, these findings identify molecular signatures in Parkinson’s disease patients’ brain and blood of potential pathophysiologic and prognostic importance.

Suggested Citation

  • Krithi Irmady & Caryn R. Hale & Rizwana Qadri & John Fak & Sitsandziwe Simelane & Thomas Carroll & Serge Przedborski & Robert B. Darnell, 2023. "Blood transcriptomic signatures associated with molecular changes in the brain and clinical outcomes in Parkinson’s disease," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39652-6
    DOI: 10.1038/s41467-023-39652-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39652-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39652-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tyler J. Bussian & Asef Aziz & Charlton F. Meyer & Barbara L. Swenson & Jan M. van Deursen & Darren J. Baker, 2018. "Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline," Nature, Nature, vol. 562(7728), pages 578-582, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaskaren Kohli & Chen Ge & Eleni Fitsiou & Miriam Doepner & Simone M. Brandenburg & William J. Faller & Todd W. Ridky & Marco Demaria, 2022. "Targeting anti-apoptotic pathways eliminates senescent melanocytes and leads to nevi regression," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Ines Sturmlechner & Chance C. Sine & Karthik B. Jeganathan & Cheng Zhang & Raul O. Fierro Velasco & Darren J. Baker & Hu Li & Jan M. Deursen, 2022. "Senescent cells limit p53 activity via multiple mechanisms to remain viable," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Madison L. Doolittle & Dominik Saul & Japneet Kaur & Jennifer L. Rowsey & Stephanie J. Vos & Kevin D. Pavelko & Joshua N. Farr & David G. Monroe & Sundeep Khosla, 2023. "Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Xu Zhang & Vesselina M. Pearsall & Chase M. Carver & Elizabeth J. Atkinson & Benjamin D. S. Clarkson & Ethan M. Grund & Michelle Baez-Faria & Kevin D. Pavelko & Jennifer M. Kachergus & Thomas A. White, 2022. "Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39652-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.