IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39557-4.html
   My bibliography  Save this article

Rapid strengthening of westerlies accompanied intensification of Northern Hemisphere glaciation

Author

Listed:
  • Joshua D. Bridges

    (University of Rochester)

  • John A. Tarduno

    (University of Rochester
    University of Rochester
    University of Rochester)

  • Rory D. Cottrell

    (University of Rochester)

  • Timothy D. Herbert

    (Brown University)

Abstract

The trigger, pace, and nature of the intensification of Northern Hemisphere Glaciation (iNHG) are uncertain, but can be probed by study of ODP Site 1208 North Pacific marine sediments. Herein, we present magnetic proxy data that indicate a 4-fold increase of dust between ~ 2.73 and ~ 2.72 Ma, with subsequent increases at the start of glacials thereafter, indicating a strengthening of the mid-latitude westerlies. Moreover, a permanent shift in dust composition after 2.72 Ma is observed, consistent with drier conditions in the source region and/or the incorporation of material which could not have been transported via the weaker Pliocene winds. The sudden increase in our dust proxy data, a coeval rapid rise in dust recorded by proxy dust data in the North Atlantic (Site U1313), and the Site 1208 shift in dust composition, suggest that the iNHG represents a permanent crossing of a climate threshold toward global cooling and ice sheet growth, ultimately driven by lower atmospheric CO2.

Suggested Citation

  • Joshua D. Bridges & John A. Tarduno & Rory D. Cottrell & Timothy D. Herbert, 2023. "Rapid strengthening of westerlies accompanied intensification of Northern Hemisphere glaciation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39557-4
    DOI: 10.1038/s41467-023-39557-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39557-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39557-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. V. Fedorov & C. M. Brierley & K. T. Lawrence & Z. Liu & P. S. Dekens & A. C. Ravelo, 2013. "Patterns and mechanisms of early Pliocene warmth," Nature, Nature, vol. 496(7443), pages 43-49, April.
    2. Gerald H. Haug & Ralf Tiedemann, 1998. "Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation," Nature, Nature, vol. 393(6686), pages 673-676, June.
    3. Robert M. DeConto & David Pollard & Paul A. Wilson & Heiko Pälike & Caroline H. Lear & Mark Pagani, 2008. "Thresholds for Cenozoic bipolar glaciation," Nature, Nature, vol. 455(7213), pages 652-656, October.
    4. Daniel J. Lunt & Gavin L. Foster & Alan M. Haywood & Emma J. Stone, 2008. "Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels," Nature, Nature, vol. 454(7208), pages 1102-1105, August.
    5. Jordan T. Abell & Gisela Winckler & Robert F. Anderson & Timothy D. Herbert, 2021. "Poleward and weakened westerlies during Pliocene warmth," Nature, Nature, vol. 589(7840), pages 70-75, January.
    6. Gerald H. Haug & Daniel M. Sigman & Ralf Tiedemann & Thomas F. Pedersen & Michael Sarnthein, 1999. "Onset of permanent stratification in the subarctic Pacific Ocean," Nature, Nature, vol. 401(6755), pages 779-782, October.
    7. E. J. Rohling & G. L. Foster & K. M. Grant & G. Marino & A. P. Roberts & M. E. Tamisiea & F. Williams, 2014. "Sea-level and deep-sea-temperature variability over the past 5.3 million years," Nature, Nature, vol. 508(7497), pages 477-482, April.
    8. Ning Tan & Jean-Baptiste Ladant & Gilles Ramstein & Christophe Dumas & Paul Bachem & Eystein Jansen, 2018. "Dynamic Greenland ice sheet driven by pCO2 variations across the Pliocene Pleistocene transition," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Ao & Eelco J. Rohling & Ran Zhang & Andrew P. Roberts & Ann E. Holbourn & Jean-Baptiste Ladant & Guillaume Dupont-Nivet & Wolfgang Kuhnt & Peng Zhang & Feng Wu & Mark J. Dekkers & Qingsong Liu & , 2021. "Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Michael E. Weber & Ian Bailey & Sidney R. Hemming & Yasmina M. Martos & Brendan T. Reilly & Thomas A. Ronge & Stefanie Brachfeld & Trevor Williams & Maureen Raymo & Simon T. Belt & Lukas Smik & Hendri, 2022. "Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Matheus Pontes-Nogueira & Marcio Martins & Laura R V Alencar & Ricardo J Sawaya, 2021. "The role of vicariance and dispersal on the temporal range dynamics of forest vipers in the Neotropical region," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    4. Ran Feng & Tripti Bhattacharya & Bette L. Otto-Bliesner & Esther C. Brady & Alan M. Haywood & Julia C. Tindall & Stephen J. Hunter & Ayako Abe-Ouchi & Wing-Le Chan & Masa Kageyama & Camille Contoux & , 2022. "Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Nicholas A. O’Mara & Charlotte Skonieczny & David McGee & Gisela Winckler & Aloys J.-M. Bory & Louisa I. Bradtmiller & Bruno Malaizé & Pratigya J. Polissar, 2022. "Pleistocene drivers of Northwest African hydroclimate and vegetation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Suning Hou & Lennert B. Stap & Ryan Paul & Mei Nelissen & Frida S. Hoem & Martin Ziegler & Appy Sluijs & Francesca Sangiorgi & Peter K. Bijl, 2023. "Reconciling Southern Ocean fronts equatorward migration with minor Antarctic ice volume change during Miocene cooling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Jun Zhang & Xiao-Qian Li & Huan-Wen Peng & Lisi Hai & Andrey S. Erst & Florian Jabbour & Rosa del C. Ortiz & Fu-Cai Xia & Pamela S. Soltis & Douglas E. Soltis & Wei Wang, 2023. "Evolutionary history of the Arctic flora," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. G. Burch Fisher & Lisa V. Luna & William H. Amidon & Douglas W. Burbank & Bas Boer & Lennert B. Stap & Bodo Bookhagen & Vincent Godard & Michael E. Oskin & Ricardo N. Alonso & Erik Tuenter & Lucas J. , 2023. "Milankovitch-paced erosion in the southern Central Andes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Marcelo A. De Lira Mota & Tom Dunkley Jones & Nursufiah Sulaiman & Kirsty M. Edgar & Tatsuhiko Yamaguchi & Melanie J. Leng & Markus Adloff & Sarah E. Greene & Richard Norris & Bridget Warren & Grace D, 2023. "Multi-proxy evidence for sea level fall at the onset of the Eocene-Oligocene transition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39557-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.