IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39401-9.html
   My bibliography  Save this article

SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells

Author

Listed:
  • Yuelong Yan

    (The University of Texas MD Anderson Cancer Center)

  • Hongqi Teng

    (The University of Texas MD Anderson Cancer Center)

  • Qinglei Hang

    (The University of Texas MD Anderson Cancer Center)

  • Lavanya Kondiparthi

    (LLC (A Sanofi Company)
    Sanofi US Services Inc)

  • Guang Lei

    (The University of Texas MD Anderson Cancer Center)

  • Amber Horbath

    (The University of Texas MD Anderson Cancer Center)

  • Xiaoguang Liu

    (The University of Texas MD Anderson Cancer Center)

  • Chao Mao

    (The University of Texas MD Anderson Cancer Center)

  • Shiqi Wu

    (The University of Texas MD Anderson Cancer Center)

  • Li Zhuang

    (The University of Texas MD Anderson Cancer Center)

  • M. James You

    (The University of Texas MD Anderson Cancer Center)

  • Masha V. Poyurovsky

    (LLC (A Sanofi Company))

  • Li Ma

    (The University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences)

  • Kellen Olszewski

    (LLC (A Sanofi Company)
    The Barer Institute)

  • Boyi Gan

    (The University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences)

Abstract

The cystine transporter solute carrier family 7 member 11 (SLC7A11; also called xCT) protects cancer cells from oxidative stress and is overexpressed in many cancers. Here we report a surprising finding that, whereas moderate overexpression of SLC7A11 is beneficial for cancer cells treated with H2O2, a common oxidative stress inducer, its high overexpression dramatically increases H2O2-induced cell death. Mechanistically, high cystine uptake in cancer cells with high overexpression of SLC7A11 in combination with H2O2 treatment results in toxic buildup of intracellular cystine and other disulfide molecules, NADPH depletion, redox system collapse, and rapid cell death (likely disulfidptosis). We further show that high overexpression of SLC7A11 promotes tumor growth but suppresses tumor metastasis, likely because metastasizing cancer cells with high expression of SLC7A11 are particularly susceptible to oxidative stress. Our findings reveal that SLC7A11 expression level dictates cancer cells’ sensitivity to oxidative stress and suggests a context-dependent role for SLC7A11 in tumor biology.

Suggested Citation

  • Yuelong Yan & Hongqi Teng & Qinglei Hang & Lavanya Kondiparthi & Guang Lei & Amber Horbath & Xiaoguang Liu & Chao Mao & Shiqi Wu & Li Zhuang & M. James You & Masha V. Poyurovsky & Li Ma & Kellen Olsze, 2023. "SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39401-9
    DOI: 10.1038/s41467-023-39401-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39401-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39401-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yilei Zhang & Robert V. Swanda & Litong Nie & Xiaoguang Liu & Chao Wang & Hyemin Lee & Guang Lei & Chao Mao & Pranavi Koppula & Weijie Cheng & Jie Zhang & Zhenna Xiao & Li Zhuang & Bingliang Fang & Ju, 2021. "mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Le Jiang & Ning Kon & Tongyuan Li & Shang-Jui Wang & Tao Su & Hanina Hibshoosh & Richard Baer & Wei Gu, 2015. "Ferroptosis as a p53-mediated activity during tumour suppression," Nature, Nature, vol. 520(7545), pages 57-62, April.
    3. Boyi Gan & Jian Hu & Shan Jiang & Yingchun Liu & Ergün Sahin & Li Zhuang & Eliot Fletcher-Sananikone & Simona Colla & Y. Alan Wang & Lynda Chin & Ronald A. DePinho, 2010. "Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells," Nature, Nature, vol. 468(7324), pages 701-704, December.
    4. Zhen-Dong Xiao & Leng Han & Hyemin Lee & Li Zhuang & Yilei Zhang & Joelle Baddour & Deepak Nagrath & Christopher G. Wood & Jian Gu & Xifeng Wu & Han Liang & Boyi Gan, 2017. "Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    5. Elena Piskounova & Michalis Agathocleous & Malea M. Murphy & Zeping Hu & Sara E. Huddlestun & Zhiyu Zhao & A. Marilyn Leitch & Timothy M. Johnson & Ralph J. DeBerardinis & Sean J. Morrison, 2015. "Oxidative stress inhibits distant metastasis by human melanoma cells," Nature, Nature, vol. 527(7577), pages 186-191, November.
    6. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Chun-Shik Shin & Prashant Mishra & Jeramie D. Watrous & Valerio Carelli & Marilena D’Aurelio & Mohit Jain & David C. Chan, 2017. "The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility," Nature Communications, Nature, vol. 8(1), pages 1-11, April.
    8. Chao Mao & Xiaoguang Liu & Yilei Zhang & Guang Lei & Yuelong Yan & Hyemin Lee & Pranavi Koppula & Shiqi Wu & Li Zhuang & Bingliang Fang & Masha V. Poyurovsky & Kellen Olszewski & Boyi Gan, 2021. "DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer," Nature, Nature, vol. 593(7860), pages 586-590, May.
    9. Nicole Vincent Jordan & Aditya Bardia & Ben S. Wittner & Cyril Benes & Matteo Ligorio & Yu Zheng & Min Yu & Tilak K. Sundaresan & Joseph A. Licausi & Rushil Desai & Ryan M. O’Keefe & Richard Y. Ebrigh, 2016. "HER2 expression identifies dynamic functional states within circulating breast cancer cells," Nature, Nature, vol. 537(7618), pages 102-106, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dadi Jiang & Youming Guo & Tianyu Wang & Liang Wang & Yuelong Yan & Ling Xia & Rakesh Bam & Zhifen Yang & Hyemin Lee & Takao Iwawaki & Boyi Gan & Albert C. Koong, 2024. "IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Hyemin Lee & Amber Horbath & Lavanya Kondiparthi & Jitendra Kumar Meena & Guang Lei & Shayani Dasgupta & Xiaoguang Liu & Li Zhuang & Pranavi Koppula & Mi Li & Iqbal Mahmud & Bo Wei & Philip L. Lorenzi, 2024. "Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Hyemin Lee & Amber Horbath & Lavanya Kondiparthi & Jitendra Kumar Meena & Guang Lei & Shayani Dasgupta & Xiaoguang Liu & Li Zhuang & Pranavi Koppula & Mi Li & Iqbal Mahmud & Bo Wei & Philip L. Lorenzi, 2024. "Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yandi Wu & Tongsheng Huang & Xinghui Li & Conghui Shen & Honglin Ren & Haiping Wang & Teng Wu & Xinlu Fu & Shijie Deng & Ziqi Feng & Shijie Xiong & Hui Li & Saifei Gao & Zhenyu Yang & Fei Gao & Lele D, 2023. "Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Dadi Jiang & Youming Guo & Tianyu Wang & Liang Wang & Yuelong Yan & Ling Xia & Rakesh Bam & Zhifen Yang & Hyemin Lee & Takao Iwawaki & Boyi Gan & Albert C. Koong, 2024. "IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Mihee Oh & Seo Young Jang & Ji-Yoon Lee & Jong Woo Kim & Youngae Jung & Jiwoo Kim & Jinho Seo & Tae-Su Han & Eunji Jang & Hye Young Son & Dain Kim & Min Wook Kim & Jin-Sung Park & Kwon-Ho Song & Kyoun, 2023. "The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Guoshu Bi & Jiaqi Liang & Yunyi Bian & Guangyao Shan & Yiwei Huang & Tao Lu & Huan Zhang & Xing Jin & Zhencong Chen & Mengnan Zhao & Hong Fan & Qun Wang & Boyi Gan & Cheng Zhan, 2024. "Polyamine-mediated ferroptosis amplification acts as a targetable vulnerability in cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Di-Yang Sun & Wen-Bin Wu & Jian-Jin Wu & Yu Shi & Jia-Jun Xu & Shen-Xi Ouyang & Chen Chi & Yi Shi & Qing-Xin Ji & Jin-Hao Miao & Jiang-Tao Fu & Jie Tong & Ping-Ping Zhang & Jia-Bao Zhang & Zhi-Yong Li, 2024. "Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    8. Nidhi Rohatgi & Wei Zou & Yongjia Li & Kevin Cho & Patrick L. Collins & Eric Tycksen & Gaurav Pandey & Carl J. DeSelm & Gary J. Patti & Anwesha Dey & Steven L. Teitelbaum, 2023. "BAP1 promotes osteoclast function by metabolic reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Zhe Wang & Xin Yang & Delin Chen & Yanqing Liu & Zhiming Li & Shoufu Duan & Zhiguo Zhang & Xuejun Jiang & Brent R. Stockwell & Wei Gu, 2024. "GAS41 modulates ferroptosis by anchoring NRF2 on chromatin," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Qiang Zhao & Young-Min Han & Ping Song & Zhixue Liu & Zuyi Yuan & Ming-Hui Zou, 2022. "Endothelial cell-specific expression of serine/threonine kinase 11 modulates dendritic cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Ming-liang Ji & Hua Jiang & Zhuang Li & Rui Geng & Jun Zheng Hu & Yu Cheng Lin & Jun Lu, 2022. "Sirt6 attenuates chondrocyte senescence and osteoarthritis progression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Bartosz Wiernicki & Sophia Maschalidi & Jonathan Pinney & Sandy Adjemian & Tom Vanden Berghe & Kodi S. Ravichandran & Peter Vandenabeele, 2022. "Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Jiaxin Liang & Deyang Yu & Chi Luo & Christopher Bennett & Mark Jedrychowski & Steve P. Gygi & Hans R. Widlund & Pere Puigserver, 2023. "Epigenetic suppression of PGC1α (PPARGC1A) causes collateral sensitivity to HMGCR-inhibitors within BRAF-treatment resistant melanomas," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Nong Lu & Zhihong Deng & Jing Gao & Chao Liang & Haiping Xia & Pingyu Zhang, 2022. "An osmium-peroxo complex for photoactive therapy of hypoxic tumors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Xinyi Shan & Jiahuan Li & Jiahao Liu & Baoli Feng & Ting Zhang & Qian Liu & Huixin Ma & Honghong Wu & Hao Wu, 2023. "Targeting ferroptosis by poly(acrylic) acid coated Mn3O4 nanoparticles alleviates acute liver injury," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Nicolas Millet & Norma V. Solis & Diane Aguilar & Michail S. Lionakis & Robert T. Wheeler & Nicholas Jendzjowsky & Marc Swidergall, 2022. "IL-23 signaling prevents ferroptosis-driven renal immunopathology during candidiasis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Gang Liu & Jian-ying Ma & Gang Hu & Huan Jin, 2021. "Identification and validation of a novel ferroptosis-related gene model for predicting the prognosis of gastric cancer patients," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-16, July.
    18. Wei Yang & Bo Mu & Jing You & Chenyu Tian & Huachao Bin & Zhiqiang Xu & Liting Zhang & Ronggang Ma & Ming Wu & Guo Zhang & Chong Huang & Linli Li & Zhenhua Shao & Lunzhi Dai & Laurent Désaubry & Sheng, 2022. "Non-classical ferroptosis inhibition by a small molecule targeting PHB2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Xiaoxu Guo & Fanghe Lin & Chuanyou Yi & Juan Song & Di Sun & Li Lin & Zhixing Zhong & Zhaorun Wu & Xiaoyu Wang & Yingkun Zhang & Jin Li & Huimin Zhang & Feng Liu & Chaoyong Yang & Jia Song, 2022. "Deep transfer learning enables lesion tracing of circulating tumor cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39401-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.