IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38681-5.html
   My bibliography  Save this article

Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations

Author

Listed:
  • Katya Ahmad

    (University College London)

  • Abid Javed

    (University of London
    University of Leeds)

  • Conor Lanphere

    (University College London)

  • Peter V. Coveney

    (University College London
    University College London
    University of Amsterdam)

  • Elena V. Orlova

    (University of London)

  • Stefan Howorka

    (University College London)

Abstract

DNA can be folded into rationally designed, unique, and functional materials. To fully realise the potential of these DNA materials, a fundamental understanding of their structure and dynamics is necessary, both in simple solvents as well as more complex and diverse anisotropic environments. Here we analyse an archetypal six-duplex DNA nanoarchitecture with single-particle cryo-electron microscopy and molecular dynamics simulations in solvents of tunable ionic strength and within the anisotropic environment of biological membranes. Outside lipid bilayers, the six-duplex bundle lacks the designed symmetrical barrel-type architecture. Rather, duplexes are arranged in non-hexagonal fashion and are disorted to form a wider, less elongated structure. Insertion into lipid membranes, however, restores the anticipated barrel shape due to lateral duplex compression by the bilayer. The salt concentration has a drastic impact on the stability of the inserted barrel-shaped DNA nanopore given the tunable electrostatic repulsion between the negatively charged duplexes. By synergistically combining experiments and simulations, we increase fundamental understanding into the environment-dependent structural dynamics of a widely used nanoarchitecture. This insight will pave the way for future engineering and biosensing applications.

Suggested Citation

  • Katya Ahmad & Abid Javed & Conor Lanphere & Peter V. Coveney & Elena V. Orlova & Stefan Howorka, 2023. "Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38681-5
    DOI: 10.1038/s41467-023-38681-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38681-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38681-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaoguo Liu & Fei Zhang & Xinxin Jing & Muchen Pan & Pi Liu & Wei Li & Bowen Zhu & Jiang Li & Hong Chen & Lihua Wang & Jianping Lin & Yan Liu & Dongyuan Zhao & Hao Yan & Chunhai Fan, 2018. "Complex silica composite nanomaterials templated with DNA origami," Nature, Nature, vol. 559(7715), pages 593-598, July.
    2. Vishal Maingi & Jonathan R. Burns & Jaakko J. Uusitalo & Stefan Howorka & Siewert J. Marrink & Mark S. P. Sansom, 2017. "Stability and dynamics of membrane-spanning DNA nanopores," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    3. Richard Kosinski & Ann Mukhortava & Wolfgang Pfeifer & Andrea Candelli & Philipp Rauch & Barbara Saccà, 2019. "Sites of high local frustration in DNA origami," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Hong Kang & Tong Lin & Xiaojin Xu & Qing-Shan Jia & Richard Lakerveld & Bryan Wei, 2021. "DNA dynamics and computation based on toehold-free strand displacement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Tim Diederichs & Genevieve Pugh & Adam Dorey & Yongzheng Xing & Jonathan R. Burns & Quoc Hung Nguyen & Marc Tornow & Robert Tampé & Stefan Howorka, 2019. "Synthetic protein-conductive membrane nanopores built with DNA," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Oliver Birkholz & Jonathan R. Burns & Christian P. Richter & Olympia E. Psathaki & Stefan Howorka & Jacob Piehler, 2018. "Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    7. Massimo Kube & Fabian Kohler & Elija Feigl & Baki Nagel-Yüksel & Elena M. Willner & Jonas J. Funke & Thomas Gerling & Pierre Stömmer & Maximilian N. Honemann & Thomas G. Martin & Sjors H. W. Scheres &, 2020. "Revealing the structures of megadalton-scale DNA complexes with nucleotide resolution," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Ebbe S. Andersen & Mingdong Dong & Morten M. Nielsen & Kasper Jahn & Ramesh Subramani & Wael Mamdouh & Monika M. Golas & Bjoern Sander & Holger Stark & Cristiano L. P. Oliveira & Jan Skov Pedersen & V, 2009. "Self-assembly of a nanoscale DNA box with a controllable lid," Nature, Nature, vol. 459(7243), pages 73-76, May.
    9. Swati Krishnan & Daniela Ziegler & Vera Arnaut & Thomas G. Martin & Korbinian Kapsner & Katharina Henneberg & Andreas R. Bausch & Hendrik Dietz & Friedrich C. Simmel, 2016. "Molecular transport through large-diameter DNA nanopores," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    10. Henri G. Franquelim & Alena Khmelinskaia & Jean-Philippe Sobczak & Hendrik Dietz & Petra Schwille, 2018. "Membrane sculpting by curved DNA origami scaffolds," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swarup Dey & Adam Dorey & Leeza Abraham & Yongzheng Xing & Irene Zhang & Fei Zhang & Stefan Howorka & Hao Yan, 2022. "A reversibly gated protein-transporting membrane channel made of DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Molly F. Parsons & Matthew F. Allan & Shanshan Li & Tyson R. Shepherd & Sakul Ratanalert & Kaiming Zhang & Krista M. Pullen & Wah Chiu & Silvi Rouskin & Mark Bathe, 2023. "3D RNA-scaffolded wireframe origami," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Fabian Schnitter & Benedikt Rieß & Christian Jandl & Job Boekhoven, 2022. "Memory, switches, and an OR-port through bistability in chemically fueled crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Martina F. Ober & Anna Baptist & Lea Wassermann & Amelie Heuer-Jungemann & Bert Nickel, 2022. "In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Liang Peng & Huarong Peng & Steven Wang & Xingjin Li & Jiaying Mo & Xiong Wang & Yun Tang & Renchao Che & Zuankai Wang & Wei Li & Dongyuan Zhao, 2023. "One-dimensionally oriented self-assembly of ordered mesoporous nanofibers featuring tailorable mesophases via kinetic control," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Tanvir, Rahamat Ullah & Zhang, Jianying & Canter, Timothy & Chen, Dick & Lu, Jingrang & Hu, Zhiqiang, 2021. "Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Le Luo & Swathi Manda & Yunjeong Park & Busra Demir & Jesse Sanchez & M. P. Anantram & Ersin Emre Oren & Ashwin Gopinath & Marco Rolandi, 2023. "DNA nanopores as artificial membrane channels for bioprotonics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Mo Xie & Weina Fang & Zhibei Qu & Yang Hu & Yichi Zhang & Jie Chao & Jiye Shi & Lihua Wang & Lianhui Wang & Yang Tian & Chunhai Fan & Huajie Liu, 2023. "High-entropy alloy nanopatterns by prescribed metallization of DNA origami templates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Smrithi Krishnan R & Kalyanashis Jana & Amina H. Shaji & Karthika S. Nair & Anjali Devi Das & Devika Vikraman & Harsha Bajaj & Ulrich Kleinekathöfer & Kozhinjampara R. Mahendran, 2022. "Assembly of transmembrane pores from mirror-image peptides," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Zhao Zhang & Zhaomeng Feng & Xiaowei Zhao & Dominique Jean & Zhiheng Yu & Edwin R. Chapman, 2023. "Functionalization and higher-order organization of liposomes with DNA nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Marcello DeLuca & Daniel Duke & Tao Ye & Michael Poirier & Yonggang Ke & Carlos Castro & Gaurav Arya, 2024. "Mechanism of DNA origami folding elucidated by mesoscopic simulations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Jeroen F. Dyck & Jonathan R. Burns & Kyle I. P. Huray & Albert Konijnenberg & Stefan Howorka & Frank Sobott, 2022. "Sizing up DNA nanostructure assembly with native mass spectrometry and ion mobility," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Jae Young Lee & Heeyuen Koh & Do-Nyun Kim, 2023. "A computational model for structural dynamics and reconfiguration of DNA assemblies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Muhammad Yaseen & Muhammad Humayun & Abbas Khan & Muhammad Usman & Habib Ullah & Asif Ali Tahir & Habib Ullah, 2021. "Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review," Energies, MDPI, vol. 14(5), pages 1-88, February.
    16. Yahong Chen & Chaoyong Yang & Zhi Zhu & Wei Sun, 2022. "Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Qi Yang & Xu Chang & Jung Yeon Lee & Minu Saji & Fei Zhang, 2023. "DNA T-shaped crossover tiles for 2D tessellation and nanoring reconfiguration," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Shekaari, Ashkan & Jafari, Mahmoud, 2019. "Statistical mechanical modeling of a DNA nanobiostructure at the base-pair level," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 80-88.
    19. Jessica A. Kretzmann & Anna Liedl & Alba Monferrer & Volodymyr Mykhailiuk & Samuel Beerkens & Hendrik Dietz, 2023. "Gene-encoding DNA origami for mammalian cell expression," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38681-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.