IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38548-9.html
   My bibliography  Save this article

Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface

Author

Listed:
  • Xuexi Yan

    (Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China)

  • Yixiao Jiang

    (Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China)

  • Qianqian Jin

    (Guangxi University of Science and Technology)

  • Tingting Yao

    (Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China)

  • Weizhen Wang

    (Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China)

  • Ang Tao

    (Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China)

  • Chunyang Gao

    (Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China)

  • Xiang Li

    (Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China)

  • Chunlin Chen

    (Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China
    Ji Hua Laboratory)

  • Hengqiang Ye

    (Ji Hua Laboratory)

  • Xiu-Liang Ma

    (Institute of Metal Research, Chinese Academy of Sciences, School of Material Science and Engineering, University of Science and Technology of China
    Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory
    Institute of Physics, Chinese Academy of Sciences)

Abstract

Incoherent interfaces with large mismatches usually exhibit very weak interfacial interactions so that they rarely generate intriguing interfacial properties. Here we demonstrate unexpected strong interfacial interactions at the incoherent AlN/Al2O3 (0001) interface with a large mismatch by combining transmission electron microscopy, first-principles calculations, and cathodoluminescence spectroscopy. It is revealed that strong interfacial interactions have significantly tailored the interfacial atomic structure and electronic properties. Misfit dislocation networks and stacking faults are formed at this interface, which is rarely observed at other incoherent interfaces. The band gap of the interface reduces significantly to ~ 3.9 eV due to the competition between the elongated Al-N and Al-O bonds across the interface. Thus this incoherent interface can generate a very strong interfacial ultraviolet light emission. Our findings suggest that incoherent interfaces can exhibit strong interfacial interactions and unique interfacial properties, thereby opening an avenue for the development of related heterojunction materials and devices.

Suggested Citation

  • Xuexi Yan & Yixiao Jiang & Qianqian Jin & Tingting Yao & Weizhen Wang & Ang Tao & Chunyang Gao & Xiang Li & Chunlin Chen & Hengqiang Ye & Xiu-Liang Ma, 2023. "Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38548-9
    DOI: 10.1038/s41467-023-38548-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38548-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38548-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruishi Qi & Ruochen Shi & Yuehui Li & Yuanwei Sun & Mei Wu & Ning Li & Jinlong Du & Kaihui Liu & Chunlin Chen & Ji Chen & Feng Wang & Dapeng Yu & En-Ge Wang & Peng Gao, 2021. "Measuring phonon dispersion at an interface," Nature, Nature, vol. 599(7885), pages 399-403, November.
    2. David L. Allara, 2005. "A perspective on surfaces and interfaces," Nature, Nature, vol. 437(7059), pages 638-639, September.
    3. A. Ohtomo & H. Y. Hwang, 2004. "A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface," Nature, Nature, vol. 427(6973), pages 423-426, January.
    4. Yoshitaka Taniyasu & Makoto Kasu & Toshiki Makimoto, 2006. "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature, Nature, vol. 441(7091), pages 325-328, May.
    5. Eric R. Hoglund & De-Liang Bao & Andrew O’Hara & Sara Makarem & Zachary T. Piontkowski & Joseph R. Matson & Ajay K. Yadav & Ryan C. Haislmaier & Roman Engel-Herbert & Jon F. Ihlefeld & Jayakanth Ravic, 2022. "Emergent interface vibrational structure of oxide superlattices," Nature, Nature, vol. 601(7894), pages 556-561, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruochen Shi & Qize Li & Xiaofeng Xu & Bo Han & Ruixue Zhu & Fachen Liu & Ruishi Qi & Xiaowen Zhang & Jinlong Du & Ji Chen & Dapeng Yu & Xuetao Zhu & Jiandong Guo & Peng Gao, 2024. "Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. J. W. Lee & K. Eom & T. R. Paudel & B. Wang & H. Lu & H. X. Huyan & S. Lindemann & S. Ryu & H. Lee & T. H. Kim & Y. Yuan & J. A. Zorn & S. Lei & W. P. Gao & T. Tybell & V. Gopalan & X. Q. Pan & A. Gru, 2021. "In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    4. Felix Küster & Sascha Brinker & Samir Lounis & Stuart S. P. Parkin & Paolo Sessi, 2021. "Long range and highly tunable interaction between local spins coupled to a superconducting condensate," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Yuhao Hong & Long Wei & Qinghua Zhang & Zhixiong Deng & Xiaxia Liao & Yangbo Zhou & Lei Wang & Tongrui Li & Junhua Liu & Wen Xiao & Shilin Hu & Lingfei Wang & Lin Li & Mark Huijben & Yulin Gan & Kai C, 2023. "A broad-spectrum gas sensor based on correlated two-dimensional electron gas," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Sara Varotto & Annika Johansson & Börge Göbel & Luis M. Vicente-Arche & Srijani Mallik & Julien Bréhin & Raphaël Salazar & François Bertran & Patrick Le Fèvre & Nicolas Bergeal & Julien Rault & Ingrid, 2022. "Direct visualization of Rashba-split bands and spin/orbital-charge interconversion at KTaO3 interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Pooja Sindhu & K. S. Ananthram & Anil Jain & Kartick Tarafder & Nirmalya Ballav, 2022. "Charge-transfer interface of insulating metal-organic frameworks with metallic conduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Guanghui Cheng & Mohammad Mushfiqur Rahman & Zhiping He & Andres Llacsahuanga Allcca & Avinash Rustagi & Kirstine Aggerbeck Stampe & Yanglin Zhu & Shaohua Yan & Shangjie Tian & Zhiqiang Mao & Hechang , 2022. "Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Yixi Zhou & Adrien Waelchli & Margherita Boselli & Iris Crassee & Adrien Bercher & Weiwei Luo & Jiahua Duan & J.L.M. Mechelen & Dirk Marel & Jérémie Teyssier & Carl Willem Rischau & Lukas Korosec & St, 2023. "Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO3/SrTiO3 heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Shingo Kaneta-Takada & Miho Kitamura & Shoma Arai & Takuma Arai & Ryo Okano & Le Duc Anh & Tatsuro Endo & Koji Horiba & Hiroshi Kumigashira & Masaki Kobayashi & Munetoshi Seki & Hitoshi Tabata & Masaa, 2022. "Giant spin-to-charge conversion at an all-epitaxial single-crystal-oxide Rashba interface with a strongly correlated metal interlayer," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Kitae Eom & Bongwook Chung & Sehoon Oh & Hua Zhou & Jinsol Seo & Sang Ho Oh & Jinhyuk Jang & Si-Young Choi & Minsu Choi & Ilwan Seo & Yun Sang Lee & Youngmin Kim & Hyungwoo Lee & Jung-Woo Lee & Kyoung, 2024. "Surface triggered stabilization of metastable charge-ordered phase in SrTiO3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Shingo Toyoda & Manfred Fiebig & Lea Forster & Taka-hisa Arima & Yoshinori Tokura & Naoki Ogawa, 2021. "Writing of strain-controlled multiferroic ribbons into MnWO4," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    13. Cody A. Dennett & Narayan Poudel & Paul J. Simmonds & Ashutosh Tiwari & David H. Hurley & Krzysztof Gofryk, 2022. "Towards actinide heterostructure synthesis and science," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    14. Marti Checa & Addis S. Fuhr & Changhyo Sun & Rama Vasudevan & Maxim Ziatdinov & Ilia Ivanov & Seok Joon Yun & Kai Xiao & Alp Sehirlioglu & Yunseok Kim & Pankaj Sharma & Kyle P. Kelley & Neus Domingo &, 2023. "High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Chatterjee, U. & Park, Ji-Hyeon & Um, Dae-Young & Lee, Cheul-Ro, 2017. "III-nitride nanowires for solar light harvesting: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1002-1015.
    16. Yeh, Naichia & Ding, Ting Jou & Yeh, Pulin, 2015. "Light-emitting diodes׳ light qualities and their corresponding scientific applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 55-61.
    17. Mahmut S. Kavrik & Jordan A. Hachtel & Wonhee Ko & Caroline Qian & Alex Abelson & Eyup B. Unlu & Harshil Kashyap & An-Ping Li & Juan C. Idrobo & Matt Law, 2022. "Emergence of distinct electronic states in epitaxially-fused PbSe quantum dot superlattices," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Ning Li & Ruochen Shi & Yifei Li & Ruishi Qi & Fachen Liu & Xiaowen Zhang & Zhetong Liu & Yuehui Li & Xiangdong Guo & Kaihui Liu & Ying Jiang & Xin-Zheng Li & Ji Chen & Lei Liu & En-Ge Wang & Peng Gao, 2023. "Phonon transition across an isotopic interface," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Alejo, Anna & Jenkins, Robert & Reuge, Nicolas & Yao, Haogen, 2023. "Understanding and addressing the post-pandemic learning disparities," International Journal of Educational Development, Elsevier, vol. 102(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38548-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.