IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38537-y.html
   My bibliography  Save this article

Stacked binding of a PET ligand to Alzheimer’s tau paired helical filaments

Author

Listed:
  • Gregory E. Merz

    (University of California San Francisco
    University of California San Francisco)

  • Matthew J. Chalkley

    (University of California San Francisco)

  • Sophia K. Tan

    (University of California San Francisco)

  • Eric Tse

    (University of California San Francisco)

  • Joanne Lee

    (University of California San Francisco)

  • Stanley B. Prusiner

    (University of California San Francisco
    University of California San Francisco
    University of California San Francisco)

  • Nick A. Paras

    (University of California San Francisco
    University of California San Francisco)

  • William F. DeGrado

    (University of California San Francisco
    University of California San Francisco)

  • Daniel R. Southworth

    (University of California San Francisco
    University of California San Francisco)

Abstract

Accumulation of filamentous aggregates of tau protein in the brain is a pathological hallmark of Alzheimer’s disease (AD) and many other neurodegenerative tauopathies. The filaments adopt disease-specific cross-β amyloid conformations that self-propagate and are implicated in neuronal loss. Development of molecular diagnostics and therapeutics is of critical importance. However, mechanisms of small molecule binding to the amyloid core is poorly understood. We used cryo–electron microscopy to determine a 2.7 Å structure of AD patient-derived tau paired-helical filaments bound to the PET ligand GTP-1. The compound is bound stoichiometrically at a single site along an exposed cleft of each protofilament in a stacked arrangement matching the fibril symmetry. Multiscale modeling reveals pi-pi aromatic interactions that pair favorably with the small molecule–protein contacts, supporting high specificity and affinity for the AD tau conformation. This binding mode offers critical insight into designing compounds to target different amyloid folds found across neurodegenerative diseases.

Suggested Citation

  • Gregory E. Merz & Matthew J. Chalkley & Sophia K. Tan & Eric Tse & Joanne Lee & Stanley B. Prusiner & Nick A. Paras & William F. DeGrado & Daniel R. Southworth, 2023. "Stacked binding of a PET ligand to Alzheimer’s tau paired helical filaments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38537-y
    DOI: 10.1038/s41467-023-38537-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38537-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38537-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Falcon & Wenjuan Zhang & Alexey G. Murzin & Garib Murshudov & Holly J. Garringer & Ruben Vidal & R. Anthony Crowther & Bernardino Ghetti & Sjors H. W. Scheres & Michel Goedert, 2018. "Structures of filaments from Pick’s disease reveal a novel tau protein fold," Nature, Nature, vol. 561(7721), pages 137-140, September.
    2. Mariano Stornaiuolo & Gerdien E. De Kloe & Prakash Rucktooa & Alexander Fish & René van Elk & Ewald S. Edink & Daniel Bertrand & August B. Smit & Iwan J. P. de Esch & Titia K. Sixma, 2013. "Assembly of a π–π stack of ligands in the binding site of an acetylcholine-binding protein," Nature Communications, Nature, vol. 4(1), pages 1-11, October.
    3. Paul M. Seidler & Kevin A. Murray & David R. Boyer & Peng Ge & Michael R. Sawaya & Carolyn J. Hu & Xinyi Cheng & Romany Abskharon & Hope Pan & Michael A. DeTure & Christopher K. Williams & Dennis W. D, 2022. "Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yang Shi & Wenjuan Zhang & Yang Yang & Alexey G. Murzin & Benjamin Falcon & Abhay Kotecha & Mike Beers & Airi Tarutani & Fuyuki Kametani & Holly J. Garringer & Ruben Vidal & Grace I. Hallinan & Tammar, 2021. "Structure-based classification of tauopathies," Nature, Nature, vol. 598(7880), pages 359-363, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Louros & Martin Wilkinson & Grigoria Tsaka & Meine Ramakers & Chiara Morelli & Teresa Garcia & Rodrigo Gallardo & Sam D’Haeyer & Vera Goossens & Dominique Audenaert & Dietmar Rudolf Thal & Ia, 2024. "Local structural preferences in shaping tau amyloid polymorphism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binh An Nguyen & Virender Singh & Shumaila Afrin & Anna Yakubovska & Lanie Wang & Yasmin Ahmed & Rose Pedretti & Maria del Carmen Fernandez-Ramirez & Preeti Singh & Maja Pękała & Luis O. Cabrera Herna, 2024. "Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Martin Wilkinson & Rodrigo U. Gallardo & Roberto Maya Martinez & Nicolas Guthertz & Masatomo So & Liam D. Aubrey & Sheena E. Radford & Neil A. Ranson, 2023. "Disease-relevant β2-microglobulin variants share a common amyloid fold," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Szymon W. Manka & Wenjuan Zhang & Adam Wenborn & Jemma Betts & Susan Joiner & Helen R. Saibil & John Collinge & Jonathan D. F. Wadsworth, 2022. "2.7 Å cryo-EM structure of ex vivo RML prion fibrils," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Pijush Chakraborty & Gwladys Rivière & Alina Hebestreit & Alain Ibáñez Opakua & Ina M. Vorberg & Loren B. Andreas & Markus Zweckstetter, 2023. "Acetylation discriminates disease-specific tau deposition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Nicolai Franzmeier & Matthias Brendel & Leonie Beyer & Luna Slemann & Gabor G. Kovacs & Thomas Arzberger & Carolin Kurz & Gesine Respondek & Milica J. Lukic & Davina Biel & Anna Rubinski & Lukas Front, 2022. "Tau deposition patterns are associated with functional connectivity in primary tauopathies," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Inbal Maniv & Mahasen Sarji & Anwar Bdarneh & Alona Feldman & Roi Ankawa & Elle Koren & Inbar Magid-Gold & Noa Reis & Despina Soteriou & Shiran Salomon-Zimri & Tali Lavy & Ellina Kesselman & Naama Koi, 2023. "Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Dilraj Lama & Thibault Vosselman & Cagla Sahin & Judit Liaño-Pons & Carmine P. Cerrato & Lennart Nilsson & Kaare Teilum & David P. Lane & Michael Landreh & Marie Arsenian Henriksson, 2024. "A druggable conformational switch in the c-MYC transactivation domain," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Nathalie Kyalu Ngoie Zola & Clémence Balty & Sébastien Pyr dit Ruys & Axelle A. T. Vanparys & Nicolas D. G. Huyghe & Gaëtan Herinckx & Manuel Johanns & Emilien Boyer & Pascal Kienlen-Campard & Mark H., 2023. "Specific post-translational modifications of soluble tau protein distinguishes Alzheimer’s disease and primary tauopathies," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Jinjian Hu & Wencheng Xia & Shuyi Zeng & Yeh-Jun Lim & Youqi Tao & Yunpeng Sun & Lang Zhao & Haosen Wang & Weidong Le & Dan Li & Shengnan Zhang & Cong Liu & Yan-Mei Li, 2024. "Phosphorylation and O-GlcNAcylation at the same α-synuclein site generate distinct fibril structures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Youqi Tao & Yunpeng Sun & Shiran Lv & Wencheng Xia & Kun Zhao & Qianhui Xu & Qinyue Zhao & Lin He & Weidong Le & Yong Wang & Cong Liu & Dan Li, 2022. "Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Kartikay Sharma & Fabian Stockert & Jayakrishna Shenoy & Mélanie Berbon & Muhammed Bilal Abdul-Shukkoor & Birgit Habenstein & Antoine Loquet & Matthias Schmidt & Marcus Fändrich, 2024. "Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Dhruva D. Dhavale & Alexander M. Barclay & Collin G. Borcik & Katherine Basore & Deborah A. Berthold & Isabelle R. Gordon & Jialu Liu & Moses H. Milchberg & Jennifer Y. O’Shea & Michael J. Rau & Zacha, 2024. "Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Itika Saha & Patricia Yuste-Checa & Miguel Silva Padilha & Qiang Guo & Roman Körner & Hauke Holthusen & Victoria A. Trinkaus & Irina Dudanova & Rubén Fernández-Busnadiego & Wolfgang Baumeister & David, 2023. "The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Sambhasan Banerjee & Julian Baur & Christoph Daniel & Peter Benedikt Pfeiffer & Manuel Hitzenberger & Lukas Kuhn & Sebastian Wiese & Johan Bijzet & Christian Haupt & Kerstin U. Amann & Martin Zacharia, 2022. "Amyloid fibril structure from the vascular variant of systemic AA amyloidosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Luca Pinzi & Christian Conze & Nicolo Bisi & Gabriele Dalla Torre & Ahmed Soliman & Nanci Monteiro-Abreu & Nataliya I. Trushina & Andrea Krusenbaum & Maryam Khodaei Dolouei & Andrea Hellwig & Michael , 2024. "Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Galina Limorenko & Meltem Tatli & Rajasekhar Kolla & Sergey Nazarov & Marie-Theres Weil & David C. Schöndorf & Daniela Geist & Peter Reinhardt & Dagmar E. Ehrnhoefer & Henning Stahlberg & Laura Gaspar, 2023. "Fully co-factor-free ClearTau platform produces seeding-competent Tau fibrils for reconstructing pathological Tau aggregates," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Nikolaos Louros & Martin Wilkinson & Grigoria Tsaka & Meine Ramakers & Chiara Morelli & Teresa Garcia & Rodrigo Gallardo & Sam D’Haeyer & Vera Goossens & Dominique Audenaert & Dietmar Rudolf Thal & Ia, 2024. "Local structural preferences in shaping tau amyloid polymorphism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Sukanta Jash & Sayani Banerjee & Shibin Cheng & Bin Wang & Chenxi Qiu & Asami Kondo & Jan Ernerudh & Xiao Zhen Zhou & Kun Ping Lu & Surendra Sharma, 2023. "Cis P-tau is a central circulating and placental etiologic driver and therapeutic target of preeclampsia," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38537-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.