IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38394-9.html
   My bibliography  Save this article

Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel

Author

Listed:
  • Feipeng Chen

    (The University of Hong Kong)

  • Xiufeng Li

    (Hong Kong Science Park, Shatin, New Territories)

  • Yafeng Yu

    (The University of Hong Kong)

  • Qingchuan Li

    (The University of Hong Kong
    Hong Kong Science Park, Shatin, New Territories)

  • Haisong Lin

    (The University of Hong Kong
    Hong Kong Science Park, Shatin, New Territories)

  • Lizhi Xu

    (The University of Hong Kong
    Hong Kong Science Park, Shatin, New Territories)

  • Ho Cheung Shum

    (The University of Hong Kong
    Hong Kong Science Park, Shatin, New Territories)

Abstract

Engineering heterogeneous hydrogels with distinct phases at various lengths, which resemble biological tissues with high complexity, remains challenging by existing fabricating techniques that require complicated procedures and are often only applicable at bulk scales. Here, inspired by ubiquitous phase separation phenomena in biology, we present a one-step fabrication method based on aqueous phase separation to construct two-aqueous-phase gels that comprise multiple phases with distinct physicochemical properties. The gels fabricated by this approach exhibit enhanced interfacial mechanics compared with their counterparts obtained from conventional layer-by-layer methods. Moreover, two-aqueous-phase gels with programmable structures and tunable physicochemical properties can be conveniently constructed by adjusting the polymer constituents, gelation conditions, and combining different fabrication techniques, such as 3D-printing. The versatility of our approach is demonstrated by mimicking the key features of several biological architectures at different lengths: macroscale muscle-tendon connections; mesoscale cell patterning; microscale molecular compartmentalization. The present work advances the fabrication approach for designing heterogeneous multifunctional materials for various technological and biomedical applications.

Suggested Citation

  • Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38394-9
    DOI: 10.1038/s41467-023-38394-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38394-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38394-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ovijit Chaudhuri & Justin Cooper-White & Paul A. Janmey & David J. Mooney & Vivek B. Shenoy, 2020. "Effects of extracellular matrix viscoelasticity on cellular behaviour," Nature, Nature, vol. 584(7822), pages 535-546, August.
    2. Jeong-Yun Sun & Xuanhe Zhao & Widusha R. K. Illeperuma & Ovijit Chaudhuri & Kyu Hwan Oh & David J. Mooney & Joost J. Vlassak & Zhigang Suo, 2012. "Highly stretchable and tough hydrogels," Nature, Nature, vol. 489(7414), pages 133-136, September.
    3. Hyunwoo Yuk & Claudia E. Varela & Christoph S. Nabzdyk & Xinyu Mao & Robert F. Padera & Ellen T. Roche & Xuanhe Zhao, 2019. "Dry double-sided tape for adhesion of wet tissues and devices," Nature, Nature, vol. 575(7781), pages 169-174, November.
    4. Ellen A. Lumpkin & Michael J. Caterina, 2007. "Mechanisms of sensory transduction in the skin," Nature, Nature, vol. 445(7130), pages 858-865, February.
    5. Mutian Hua & Shuwang Wu & Yanfei Ma & Yusen Zhao & Zilin Chen & Imri Frenkel & Joseph Strzalka & Hua Zhou & Xinyuan Zhu & Ximin He, 2021. "Strong tough hydrogels via the synergy of freeze-casting and salting out," Nature, Nature, vol. 590(7847), pages 594-599, February.
    6. Wei Guo & Andrew B. Kinghorn & Yage Zhang & Qingchuan Li & Aditi Dey Poonam & Julian A. Tanner & Ho Cheung Shum, 2021. "Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Hongliang Tan & Song Guo & Ngoc-Duy Dinh & Rongcong Luo & Lin Jin & Chia-Hung Chen, 2017. "Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huimin He & Xi Wei & Bin Yang & Hongzhen Liu & Mingze Sun & Yanran Li & Aixin Yan & Chuyang Y. Tang & Yuan Lin & Lizhi Xu, 2022. "Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Bin Xue & Zoobia Bashir & Yachong Guo & Wenting Yu & Wenxu Sun & Yiran Li & Yiyang Zhang & Meng Qin & Wei Wang & Yi Cao, 2023. "Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Guangyu Bao & Qiman Gao & Massimo Cau & Nabil Ali-Mohamad & Mitchell Strong & Shuaibing Jiang & Zhen Yang & Amin Valiei & Zhenwei Ma & Marco Amabili & Zu-Hua Gao & Luc Mongeau & Christian Kastrup & Ji, 2022. "Liquid-infused microstructured bioadhesives halt non-compressible hemorrhage," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Bo Yi & Tianjie Li & Boguang Yang & Sirong Chen & Jianyang Zhao & Pengchao Zhao & Kunyu Zhang & Yi Wang & Zuankai Wang & Liming Bian, 2024. "Surface hydrophobization of hydrogels via interface dynamics-induced network reconfiguration," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Xiao Liu & Jingping Wu & Keke Qiao & Guohan Liu & Zhengjin Wang & Tongqing Lu & Zhigang Suo & Jian Hu, 2022. "Topoarchitected polymer networks expand the space of material properties," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Tuo Deng & Dongxiu Gao & Xuemei Song & Zhipeng Zhou & Lixiao Zhou & Maixian Tao & Zexiu Jiang & Lian Yang & Lan Luo & Ankun Zhou & Lin Hu & Hongbo Qin & Mingyi Wu, 2023. "A natural biological adhesive from snail mucus for wound repair," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Jing-Ang Zhu & Yetong Jia & Jincheng Lei & Zishun Liu, 2021. "Deep Learning Approach to Mechanical Property Prediction of Single-Network Hydrogel," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    10. Bin Xue & Jie Gu & Lan Li & Wenting Yu & Sheng Yin & Meng Qin & Qing Jiang & Wei Wang & Yi Cao, 2021. "Hydrogel tapes for fault-tolerant strong wet adhesion," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. AruĆ£ Clayton Da Silva & Junzhi Wang & Ivan Rusev Minev, 2022. "Electro-assisted printing of soft hydrogels via controlled electrochemical reactions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Danping Tian & Ruipeng Hao & Xiaoming Zhang & Hu Shi & Yuwei Wang & Linfeng Liang & Haichao Liu & Hengquan Yang, 2023. "Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Chongrui Zhang & Xufei Liu & Jiang Gong & Qiang Zhao, 2023. "Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Yangteng Ou & Shixiang Cao & Yang Zhang & Hongjia Zhu & Chengzhi Guo & Wei Yan & Fengxue Xin & Weiliang Dong & Yanli Zhang & Masashi Narita & Ziyi Yu & Tuomas P. J. Knowles, 2023. "Bioprinting microporous functional living materials from protein-based core-shell microgels," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Yujie Hua & Kai Wang & Yingying Huo & Yaping Zhuang & Yuhui Wang & Wenzhuo Fang & Yuyan Sun & Guangdong Zhou & Qiang Fu & Wenguo Cui & Kaile Zhang, 2023. "Four-dimensional hydrogel dressing adaptable to the urethral microenvironment for scarless urethral reconstruction," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Qingao Chen & Lunjun Qu & Hui Hou & Jiayue Huang & Chen Li & Ying Zhu & Yongkang Wang & Xiaohong Chen & Qian Zhou & Yan Yang & Chaolong Yang, 2024. "Long lifetimes white afterglow in slightly crosslinked polymer systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Zhao Wang & Jan Lauko & Amanda W. Kijas & Elliot P. Gilbert & Petri Turunen & Ramanathan Yegappan & Dongxiu Zou & Jitendra Mata & Alan E. Rowan, 2023. "Snake venom-defined fibrin architecture dictates fibroblast survival and differentiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Yuhao Weng & Huihong Chen & Xiaoqian Chen & Huilin Yang & Chia-Hung Chen & Hongliang Tan, 2022. "Adenosine triphosphate-activated prodrug system for on-demand bacterial inactivation and wound disinfection," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38394-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.