IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37511-y.html
   My bibliography  Save this article

Observation of entanglement transition of pseudo-random mixed states

Author

Listed:
  • Tong Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shang Liu

    (University of California)

  • Hekang Li

    (Chinese Academy of Sciences)

  • Hao Li

    (Chinese Academy of Sciences)

  • Kaixuan Huang

    (Chinese Academy of Sciences
    Beijing Academy of Quantum Information Sciences)

  • Zhongcheng Xiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Beijing Academy of Quantum Information Sciences
    Hefei National Laboratory)

  • Xiaohui Song

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Beijing Academy of Quantum Information Sciences
    Hefei National Laboratory)

  • Kai Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Beijing Academy of Quantum Information Sciences
    Hefei National Laboratory)

  • Dongning Zheng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Beijing Academy of Quantum Information Sciences
    Hefei National Laboratory)

  • Heng Fan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Beijing Academy of Quantum Information Sciences
    Hefei National Laboratory)

Abstract

Random quantum states serve as a powerful tool in various scientific fields, including quantum supremacy and black hole physics. It has been theoretically predicted that entanglement transitions may happen for different partitions of multipartite random quantum states; however, the experimental observation of these transitions is still absent. Here, we experimentally demonstrate the entanglement transitions witnessed by negativity on a fully connected superconducting processor. We apply parallel entangling operations, that significantly decrease the depth of the pseudo-random circuits, to generate pseudo-random pure states of up to 15 qubits. By quantum state tomography of the reduced density matrix of six qubits, we measure the negativity spectra. Then, by changing the sizes of the environment and subsystems, we observe the entanglement transitions that are directly identified by logarithmic entanglement negativities based on the negativity spectra. In addition, we characterize the randomness of our circuits by measuring the distance between the distribution of output bit-string probabilities and the Porter-Thomas distribution. Our results show that superconducting processors with all-to-all connectivity constitute a promising platform for generating random states and understanding the entanglement structure of multipartite quantum systems.

Suggested Citation

  • Tong Liu & Shang Liu & Hekang Li & Hao Li & Kaixuan Huang & Zhongcheng Xiang & Xiaohui Song & Kai Xu & Dongning Zheng & Heng Fan, 2023. "Observation of entanglement transition of pseudo-random mixed states," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37511-y
    DOI: 10.1038/s41467-023-37511-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37511-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37511-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    2. Rajibul Islam & Ruichao Ma & Philipp M. Preiss & M. Eric Tai & Alexander Lukin & Matthew Rispoli & Markus Greiner, 2015. "Measuring entanglement entropy in a quantum many-body system," Nature, Nature, vol. 528(7580), pages 77-83, December.
    3. Yao Lu & Shuaining Zhang & Kuan Zhang & Wentao Chen & Yangchao Shen & Jialiang Zhang & Jing-Ning Zhang & Kihwan Kim, 2019. "Global entangling gates on arbitrary ion qubits," Nature, Nature, vol. 572(7769), pages 363-367, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanwu Gu & Wei-Feng Zhuang & Xudan Chai & Dong E. Liu, 2023. "Benchmarking universal quantum gates via channel spectrum," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
    3. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.
    4. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. T. Brown & E. Doucet & D. Ristè & G. Ribeill & K. Cicak & J. Aumentado & R. Simmonds & L. Govia & A. Kamal & L. Ranzani, 2022. "Trade off-free entanglement stabilization in a superconducting qutrit-qubit system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Canella, G.A. & França, V.V., 2020. "Entanglement in disordered superfluids: The impact of density, interaction and harmonic confinement on the Superconductor–Insulator transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    9. Piotr Tomasz Makowski & Yuya Kajikawa, 2021. "Automation-driven innovation management? Toward Innovation-Automation-Strategy cycle," Papers 2103.02395, arXiv.org.
    10. Shuai-Peng Wang & Alessandro Ridolfo & Tiefu Li & Salvatore Savasta & Franco Nori & Y. Nakamura & J. Q. You, 2023. "Probing the symmetry breaking of a light–matter system by an ancillary qubit," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    11. Francesco Bova & Avi Goldfarb & Roger G. Melko, 2023. "Quantum Economic Advantage," Management Science, INFORMS, vol. 69(2), pages 1116-1126, February.
    12. Beatrice Polacchi & Dominik Leichtle & Leonardo Limongi & Gonzalo Carvacho & Giorgio Milani & Nicolò Spagnolo & Marc Kaplan & Fabio Sciarrino & Elham Kashefi, 2023. "Multi-client distributed blind quantum computation with the Qline architecture," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Hanling Lin & Xiaofeng Wang & Min Li, 2023. "Post-Quantum Signature Scheme Based on the Root Extraction Problem over Mihailova Subgroups of Braid Groups," Mathematics, MDPI, vol. 11(13), pages 1-12, June.
    14. George Gillard & Edmund Clarke & Evgeny A. Chekhovich, 2022. "Harnessing many-body spin environment for long coherence storage and high-fidelity single-shot qubit readout," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Sainan Huai & Kunliang Bu & Xiu Gu & Zhenxing Zhang & Shuoming An & Xiaopei Yang & Yuan Li & Tianqi Cai & Yicong Zheng, 2024. "Fast joint parity measurement via collective interactions induced by stimulated emission," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Gupta, Shivam & Modgil, Sachin & Bhatt, Priyanka C. & Chiappetta Jabbour, Charbel Jose & Kamble, Sachin, 2023. "Quantum computing led innovation for achieving a more sustainable Covid-19 healthcare industry," Technovation, Elsevier, vol. 120(C).
    17. Johannes Herrmann & Sergi Masot Llima & Ants Remm & Petr Zapletal & Nathan A. McMahon & Colin Scarato & François Swiadek & Christian Kraglund Andersen & Christoph Hellings & Sebastian Krinner & Nathan, 2022. "Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Meng-Leong How & Sin-Mei Cheah, 2023. "Business Renaissance: Opportunities and Challenges at the Dawn of the Quantum Computing Era," Businesses, MDPI, vol. 3(4), pages 1-21, November.
    19. Christoph Berke & Evangelos Varvelis & Simon Trebst & Alexander Altland & David P. DiVincenzo, 2022. "Transmon platform for quantum computing challenged by chaotic fluctuations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37511-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.