IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36955-6.html
   My bibliography  Save this article

A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus

Author

Listed:
  • Michael H. Berry

    (Oregon Health & Science University
    Oregon Health & Science University)

  • Michael Moldavan

    (Oregon Health and Science University
    Oregon Health & Science University)

  • Tavita Garrett

    (Oregon Health & Science University
    Oregon Health & Science University)

  • Marc Meadows

    (Oregon Health & Science University
    Oregon Health & Science University)

  • Olga Cravetchi

    (Oregon Health and Science University
    Oregon Health & Science University)

  • Elizabeth White

    (Oregon Health & Science University)

  • Joseph Leffler

    (Oregon Health & Science University)

  • Henrique Gersdorff

    (Oregon Health & Science University
    Oregon Health & Science University
    Oregon Health & Science University)

  • Kevin M. Wright

    (Oregon Health & Science University)

  • Charles N. Allen

    (Oregon Health and Science University
    Oregon Health & Science University)

  • Benjamin Sivyer

    (Oregon Health & Science University
    Oregon Health & Science University)

Abstract

Visual input to the hypothalamus from intrinsically photosensitive retinal ganglion cells (ipRGCs) influences several functions including circadian entrainment, body temperature, and sleep. ipRGCs also project to nuclei such as the supraoptic nucleus (SON), which is involved in systemic fluid homeostasis, maternal behavior, social behaviors, and appetite. However, little is known about the SON-projecting ipRGCs or their relationship to well-characterized ipRGC subtypes. Using a GlyT2Cre mouse line, we show a subtype of ipRGCs restricted to the dorsal retina that selectively projects to the SON. These ipRGCs tile a dorsal region of the retina, forming a substrate for encoding ground luminance. Optogenetic activation of their axons demonstrates they release the neurotransmitter glutamate in multiple regions, including the suprachiasmatic nucleus (SCN) and SON. Our results challenge the idea that ipRGC dendrites overlap to optimize photon capture and suggests non-image forming vision operates to sample local regions of the visual field to influence diverse behaviors.

Suggested Citation

  • Michael H. Berry & Michael Moldavan & Tavita Garrett & Marc Meadows & Olga Cravetchi & Elizabeth White & Joseph Leffler & Henrique Gersdorff & Kevin M. Wright & Charles N. Allen & Benjamin Sivyer, 2023. "A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36955-6
    DOI: 10.1038/s41467-023-36955-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36955-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36955-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S.-K. Chen & T. C. Badea & S. Hattar, 2011. "Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs," Nature, Nature, vol. 476(7358), pages 92-95, August.
    2. Lindsey D. Salay & Nao Ishiko & Andrew D. Huberman, 2018. "A midline thalamic circuit determines reactions to visual threat," Nature, Nature, vol. 557(7704), pages 183-189, May.
    3. Yifan Yao & Alana B’nai Taub & Joseph LeSauter & Rae Silver, 2021. "Identification of the suprachiasmatic nucleus venous portal system in the mammalian brain," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. S. Hattar & R. J. Lucas & N. Mrosovsky & S. Thompson & R. H. Douglas & M. W. Hankins & J. Lem & M. Biel & F. Hofmann & R. G. Foster & K.-W. Yau, 2003. "Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice," Nature, Nature, vol. 424(6944), pages 75-81, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Léonie Geissmann & David Coynel & Andreas Papassotiropoulos & Dominique J. F. Quervain, 2023. "Neurofunctional underpinnings of individual differences in visual episodic memory performance," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36955-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.