IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36830-4.html
   My bibliography  Save this article

Ligand vacancy channels in pillared inorganic-organic hybrids for electrocatalytic organic oxidation with enzyme-like activities

Author

Listed:
  • Zhe Chen

    (Fudan University)

  • Jili Li

    (Fudan University)

  • Lingshen Meng

    (Fudan University)

  • Jianan Li

    (East China University of Science and Technology)

  • Yaming Hao

    (Fudan University)

  • Tao Jiang

    (Fudan University)

  • Xuejing Yang

    (East China University of Science and Technology)

  • Yefei Li

    (Fudan University)

  • Zhi-Pan Liu

    (Fudan University)

  • Ming Gong

    (Fudan University)

Abstract

Simultaneously achieving abundant and well-defined active sites with high selectivity has been one of the ultimate goals for heterogeneous catalysis. Herein, we construct a class of Ni hydroxychloride-based inorganic-organic hybrid electrocatalysts with the inorganic Ni hydroxychloride chains pillared by the bidentate N-N ligands. The precise evacuation of N-N ligands under ultrahigh-vacuum forms ligand vacancies while partially retaining some ligands as structural pillars. The high density of ligand vacancies forms the active vacancy channel with abundant and highly-accessible undercoordinated Ni sites, exhibiting 5-25 fold and 20-400 fold activity enhancement compared to the hybrid pre-catalyst and standard β-Ni(OH)2 for the electrochemical oxidation of 25 different organic substrates, respectively. The tunable N-N ligand can also tailor the sizes of the vacancy channels to significantly impact the substrate configuration leading to unprecedented substrate-dependent reactivities on hydroxide/oxide catalysts. This approach bridges heterogenous and homogeneous catalysis for creating efficient and functional catalysis with enzyme-like properties.

Suggested Citation

  • Zhe Chen & Jili Li & Lingshen Meng & Jianan Li & Yaming Hao & Tao Jiang & Xuejing Yang & Yefei Li & Zhi-Pan Liu & Ming Gong, 2023. "Ligand vacancy channels in pillared inorganic-organic hybrids for electrocatalytic organic oxidation with enzyme-like activities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36830-4
    DOI: 10.1038/s41467-023-36830-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36830-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36830-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linlin Cao & Qiquan Luo & Jiajia Chen & Lan Wang & Yue Lin & Huijuan Wang & Xiaokang Liu & Xinyi Shen & Wei Zhang & Wei Liu & Zeming Qi & Zheng Jiang & Jinlong Yang & Tao Yao, 2019. "Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Chang Hyuck Choi & Minho Kim & Han Chang Kwon & Sung June Cho & Seongho Yun & Hee-Tak Kim & Karl J. J. Mayrhofer & Hyungjun Kim & Minkee Choi, 2016. "Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    3. Ana Primo & Florentina Neatu & Mihaela Florea & Vasile Parvulescu & Hermenegildo Garcia, 2014. "Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    4. Junqing Yan & Lingqiao Kong & Yujin Ji & Jai White & Youyong Li & Jing Zhang & Pengfei An & Shengzhong Liu & Shuit-Tong Lee & Tianyi Ma, 2019. "Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Yang Woo Lee & Passarut Boonmongkolras & Eun Jin Son & Jinhyun Kim & Sahng Ha Lee & Su Keun Kuk & Jong Wan Ko & Byungha Shin & Chan Beum Park, 2018. "Unbiased biocatalytic solar-to-chemical conversion by FeOOH/BiVO4/perovskite tandem structure," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Kun Du & Lifu Zhang & Jieqiong Shan & Jiaxin Guo & Jing Mao & Chueh-Cheng Yang & Chia-Hsin Wang & Zhenpeng Hu & Tao Ling, 2022. "Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Hasan, Md. Mahedi & Islam, Tamanna & Ratan, Zubair Ahmed & Shaikh, M. Nasiruzzaman & Karim, Mohammad Rezaul & Rahman, Mohammad Mominur & Alharbi, Hamad F. & Uddin, Jamal & Aziz, Md. Abdul & Ahammad, A, 2021. "Ni and Co oxide water oxidation electrocatalysts: Effect of thermal treatment on catalytic activity and surface morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Chun-Kuo Peng & Yu-Chang Lin & Chao‐Lung Chiang & Zhengxin Qian & Yu-Cheng Huang & Chung-Li Dong & Jian‐Feng Li & Chien-Te Chen & Zhiwei Hu & San-Yuan Chen & Yan-Gu Lin, 2023. "Zhang-Rice singlets state formed by two-step oxidation for triggering water oxidation under operando conditions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Changmin Kim & Sung O Park & Sang Kyu Kwak & Zhenhai Xia & Guntae Kim & Liming Dai, 2023. "Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Lingxi Zhou & Yangfan Shao & Fang Yin & Jia Li & Feiyu Kang & Ruitao Lv, 2023. "Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Shulin Liu & Minghua Dong & Yuxuan Wu & Sen Luan & Yu Xin & Juan Du & Shaopeng Li & Huizhen Liu & Buxing Han, 2022. "Solid surface frustrated Lewis pair constructed on layered AlOOH for hydrogenation reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Yangyang Liu & Can Li & Chunhui Tan & Zengxia Pei & Tao Yang & Shuzhen Zhang & Qianwei Huang & Yihan Wang & Zheng Zhou & Xiaozhou Liao & Juncai Dong & Hao Tan & Wensheng Yan & Huajie Yin & Zhao-Qing L, 2023. "Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Jiajun Zhao & Cehuang Fu & Ke Ye & Zheng Liang & Fangling Jiang & Shuiyun Shen & Xiaoran Zhao & Lu Ma & Zulipiya Shadike & Xiaoming Wang & Junliang Zhang & Kun Jiang, 2022. "Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Zhigang Chen & Yafeng Xu & Ding Ding & Ge Song & Xingxing Gan & Hao Li & Wei Wei & Jian Chen & Zhiyun Li & Zhongmiao Gong & Xiaoming Dong & Chengfeng Zhu & Nana Yang & Jingyuan Ma & Rui Gao & Dan Luo , 2022. "Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Xuan Zhao & Qi Yin & Xinnan Mao & Chen Cheng & Liang Zhang & Lu Wang & Tian-Fu Liu & Youyong Li & Yanguang Li, 2022. "Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Dong Liu & Tao Ding & Lifeng Wang & Huijuan Zhang & Li Xu & Beibei Pang & Xiaokang Liu & Huijuan Wang & Junhui Wang & Kaifeng Wu & Tao Yao, 2023. "In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Jiayi Chen & Mohammed Aliasgar & Fernando Buendia Zamudio & Tianyu Zhang & Yilin Zhao & Xu Lian & Lan Wen & Haozhou Yang & Wenping Sun & Sergey M. Kozlov & Wei Chen & Lei Wang, 2023. "Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Guokang Han & Xue Zhang & Wei Liu & Qinghua Zhang & Zhiqiang Wang & Jun Cheng & Tao Yao & Lin Gu & Chunyu Du & Yunzhi Gao & Geping Yin, 2021. "Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Jie Wei & Hua Tang & Li Sheng & Ruyang Wang & Minghui Fan & Jiale Wan & Yuheng Wu & Zhirong Zhang & Shiming Zhou & Jie Zeng, 2024. "Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36830-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.