IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36147-2.html
   My bibliography  Save this article

Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis

Author

Listed:
  • Xiaohui Zhang

    (University of Science and Technology of China)

  • Zhihu Sun

    (University of Science and Technology of China)

  • Rui Jin

    (University of Science and Technology of China)

  • Chuwei Zhu

    (University of Science and Technology of China)

  • Chuanlin Zhao

    (University of Science and Technology of China)

  • Yue Lin

    (University of Science and Technology of China)

  • Qiaoqiao Guan

    (University of Science and Technology of China)

  • Lina Cao

    (University of Science and Technology of China)

  • Hengwei Wang

    (University of Science and Technology of China)

  • Shang Li

    (University of Science and Technology of China)

  • Hancheng Yu

    (University of Science and Technology of China)

  • Xinyu Liu

    (University of Science and Technology of China)

  • Leilei Wang

    (University of Science and Technology of China)

  • Shiqiang Wei

    (University of Science and Technology of China)

  • Wei-Xue Li

    (University of Science and Technology of China)

  • Junling Lu

    (University of Science and Technology of China)

Abstract

Core-shell bimetallic nanocatalysts have attracted long-standing attention in heterogeneous catalysis. Tailoring both the core size and shell thickness to the dedicated geometrical and electronic properties for high catalytic reactivity is important but challenging. Here, taking Au@Pd core-shell catalysts as an example, we disclose by theory that a large size of Au core with a two monolayer of Pd shell is vital to eliminate undesired lattice contractions and ligand destabilizations for optimum benzyl alcohol adsorption. A set of Au@Pd/SiO2 catalysts with various core sizes and shell thicknesses are precisely fabricated. In the benzyl alcohol oxidation reaction, we find that the activity increases monotonically with the core size but varies nonmontonically with the shell thickness, where a record-high activity is achieved on a Au@Pd catalyst with a large core size of 6.8 nm and a shell thickness of ~2–3 monolayers. These findings highlight the conjugated dual particle size effect in bimetallic catalysis.

Suggested Citation

  • Xiaohui Zhang & Zhihu Sun & Rui Jin & Chuwei Zhu & Chuanlin Zhao & Yue Lin & Qiaoqiao Guan & Lina Cao & Hengwei Wang & Shang Li & Hancheng Yu & Xinyu Liu & Leilei Wang & Shiqiang Wei & Wei-Xue Li & Ju, 2023. "Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36147-2
    DOI: 10.1038/s41467-023-36147-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36147-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36147-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaojuan Zhu & Qishui Guo & Yafei Sun & Shangjun Chen & Jian-Qiang Wang & Mengmeng Wu & Wenzhao Fu & Yanqiang Tang & Xuezhi Duan & De Chen & Ying Wan, 2019. "Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Junling Lu & Ke-Bin Low & Yu Lei & Joseph A. Libera & Alan Nicholls & Peter C. Stair & Jeffrey W. Elam, 2014. "Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    3. Tianou He & Weicong Wang & Fenglei Shi & Xiaolong Yang & Xiang Li & Jianbo Wu & Yadong Yin & Mingshang Jin, 2021. "Mastering the surface strain of platinum catalysts for efficient electrocatalysis," Nature, Nature, vol. 598(7879), pages 76-81, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zezhou Li & Zhiheng Xie & Yao Zhang & Xilong Mu & Jisheng Xie & Hai-Jing Yin & Ya-Wen Zhang & Colin Ophus & Jihan Zhou, 2023. "Probing the atomically diffuse interfaces in Pd@Pt core-shell nanoparticles in three dimensions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Hyesung Jo & Dae Han Wi & Taegu Lee & Yongmin Kwon & Chaehwa Jeong & Juhyeok Lee & Hionsuck Baik & Alexander J. Pattison & Wolfgang Theis & Colin Ophus & Peter Ercius & Yea-Lee Lee & Seunghwa Ryu & Sa, 2022. "Direct strain correlations at the single-atom level in three-dimensional core-shell interface structures," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Bardhan, Soubhik K. & Gupta, Shelaka & Gorman, M.E. & Haider, M. Ali, 2015. "Biorenewable chemicals: Feedstocks, technologies and the conflict with food production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 506-520.
    5. Yang Yang & Xiaojuan Zhu & Lili Wang & Junyu Lang & Guohua Yao & Tian Qin & Zhouhong Ren & Liwei Chen & Xi Liu & Wei Li & Ying Wan, 2022. "Breaking scaling relationships in alkynol semi-hydrogenation by manipulating interstitial atoms in Pd with d-electron gain," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Xiaorui Zhao & Xiaojuan Zhu & Kang Wang & Junqian Lv & Shangjun Chen & Guohua Yao & Junyu Lang & Fei Lv & Yinghui Pu & Ruoou Yang & Bingsen Zhang & Zheng Jiang & Ying Wan, 2022. "Palladium catalyzed radical relay for the oxidative cross-coupling of quinolines," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Sheng Xu & Takumi Odaira & Shunsuke Sato & Xiao Xu & Toshihiro Omori & Stefanus Harjo & Takuro Kawasaki & Hanuš Seiner & Kristýna Zoubková & Yasukazu Murakami & Ryosuke Kainuma, 2022. "Non-Hookean large elastic deformation in bulk crystalline metals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Yueshan Xu & Daoxiong Wu & Qinghua Zhang & Peng Rao & Peilin Deng & Mangen Tang & Jing Li & Yingjie Hua & Chongtai Wang & Shengkui Zhong & Chunman Jia & Zhongxin Liu & Yijun Shen & Lin Gu & Xinlong Ti, 2024. "Regulating Au coverage for the direct oxidation of methane to methanol," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Lingyou Zeng & Zhonglong Zhao & Fan Lv & Zhonghong Xia & Shi-Yu Lu & Jiong Li & Kaian Sun & Kai Wang & Yingjun Sun & Qizheng Huang & Yan Chen & Qinghua Zhang & Lin Gu & Gang Lu & Shaojun Guo, 2022. "Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Geng Wu & Xiao Han & Jinyan Cai & Peiqun Yin & Peixin Cui & Xusheng Zheng & Hai Li & Cai Chen & Gongming Wang & Xun Hong, 2022. "In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36147-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.