IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36106-x.html
   My bibliography  Save this article

Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity

Author

Listed:
  • Wei-Hung Chen

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Agnes Hajduczki

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Elizabeth J. Martinez

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Hongjun Bai

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research)

  • Hanover Matz

    (University of Maryland School of Medicine
    Institute of Marine and Environmental Technology)

  • Thomas M. Hill

    (University of Maryland School of Medicine
    Institute of Marine and Environmental Technology)

  • Eric Lewitus

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research)

  • William C. Chang

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Layla Dawit

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Caroline E. Peterson

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Phyllis A. Rees

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Adelola B. Ajayi

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Emily S. Golub

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Isabella Swafford

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research)

  • Vincent Dussupt

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research)

  • Sapna David

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Sandra V. Mayer

    (Henry M. Jackson Foundation for the Advancement of Military Medicine
    Viral Diseases Branch, Walter Reed Army Institute of Research)

  • Sandrine Soman

    (Viral Diseases Branch, Walter Reed Army Institute of Research)

  • Caitlin Kuklis

    (Viral Diseases Branch, Walter Reed Army Institute of Research)

  • Courtney Corbitt

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine
    Viral Diseases Branch, Walter Reed Army Institute of Research)

  • Jocelyn King

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine
    Viral Diseases Branch, Walter Reed Army Institute of Research)

  • Misook Choe

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Rajeshwer S. Sankhala

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Paul V. Thomas

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

  • Michelle Zemil

    (U.S. Military HIV Research Program, Walter Reed Army Institute of Research)

  • Lindsay Wieczorek

    (Henry M. Jackson Foundation for the Advancement of Military Medicine
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research)

  • Tricia Hart

    (Trudeau Institute)

  • Debora Duso

    (Trudeau Institute)

  • Larry Kummer

    (Trudeau Institute)

  • Lianying Yan

    (Uniformed Services University)

  • Spencer L. Sterling

    (Uniformed Services University)

  • Eric D. Laing

    (Uniformed Services University)

  • Christopher C. Broder

    (Uniformed Services University)

  • Jazmean K. Williams

    (Integral Molecular)

  • Edgar Davidson

    (Integral Molecular)

  • Benjamin J. Doranz

    (Integral Molecular)

  • Shelly J. Krebs

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research)

  • Victoria R. Polonis

    (U.S. Military HIV Research Program, Walter Reed Army Institute of Research)

  • Dominic Paquin-Proulx

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research)

  • Morgane Rolland

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine
    U.S. Military HIV Research Program, Walter Reed Army Institute of Research)

  • William W. Reiley

    (Trudeau Institute)

  • Gregory D. Gromowski

    (Viral Diseases Branch, Walter Reed Army Institute of Research)

  • Kayvon Modjarrad

    (Walter Reed Army Institute of Research)

  • Helen Dooley

    (University of Maryland School of Medicine
    Institute of Marine and Environmental Technology)

  • M. Gordon Joyce

    (Walter Reed Army Institute of Research
    Henry M. Jackson Foundation for the Advancement of Military Medicine)

Abstract

Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.

Suggested Citation

  • Wei-Hung Chen & Agnes Hajduczki & Elizabeth J. Martinez & Hongjun Bai & Hanover Matz & Thomas M. Hill & Eric Lewitus & William C. Chang & Layla Dawit & Caroline E. Peterson & Phyllis A. Rees & Adelola, 2023. "Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36106-x
    DOI: 10.1038/s41467-023-36106-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36106-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36106-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher O. Barnes & Claudia A. Jette & Morgan E. Abernathy & Kim-Marie A. Dam & Shannon R. Esswein & Harry B. Gristick & Andrey G. Malyutin & Naima G. Sharaf & Kathryn E. Huey-Tubman & Yu E. Lee &, 2020. "SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies," Nature, Nature, vol. 588(7839), pages 682-687, December.
    2. Obinna C. Ubah & Eric W. Lake & Gihan S. Gunaratne & Joseph P. Gallant & Marie Fernie & Austin J. Robertson & Jonathan S. Marchant & Tyler D. Bold & Ryan A. Langlois & William E. Matchett & Joshua M. , 2021. "Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Jianliang Xu & Kai Xu & Seolkyoung Jung & Andrea Conte & Jenna Lieberman & Frauke Muecksch & Julio Cesar Cetrulo Lorenzi & Solji Park & Fabian Schmidt & Zijun Wang & Yaoxing Huang & Yang Luo & Manoj S, 2021. "Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants," Nature, Nature, vol. 595(7866), pages 278-282, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajeshwer S. Sankhala & Kerri G. Lal & Jaime L. Jensen & Vincent Dussupt & Letzibeth Mendez-Rivera & Hongjun Bai & Lindsay Wieczorek & Sandra V. Mayer & Michelle Zemil & Danielle A. Wagner & Samantha , 2024. "Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haisheng Yu & Banghui Liu & Yudi Zhang & Xijie Gao & Qian Wang & Haitao Xiang & Xiaofang Peng & Caixia Xie & Yaping Wang & Peiyu Hu & Jingrong Shi & Quan Shi & Pingqian Zheng & Chengqian Feng & Guofan, 2023. "Somatically hypermutated antibodies isolated from SARS-CoV-2 Delta infected patients cross-neutralize heterologous variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Wenkai Han & Ningning Chen & Xinzhou Xu & Adil Sahil & Juexiao Zhou & Zhongxiao Li & Huawen Zhong & Elva Gao & Ruochi Zhang & Yu Wang & Shiwei Sun & Peter Pak-Hang Cheung & Xin Gao, 2023. "Predicting the antigenic evolution of SARS-COV-2 with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Seoryeong Park & Jaewon Choi & Yonghee Lee & Jinsung Noh & Namphil Kim & JinAh Lee & Geummi Cho & Sujeong Kim & Duck Kyun Yoo & Chang Kyung Kang & Pyoeng Gyun Choe & Nam Joong Kim & Wan Beom Park & Se, 2024. "An ancestral SARS-CoV-2 vaccine induces anti-Omicron variants antibodies by hypermutation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Jason Gorman & Crystal Sao-Fong Cheung & Zhijian Duan & Li Ou & Maple Wang & Xuejun Chen & Cheng Cheng & Andrea Biju & Yaping Sun & Pengfei Wang & Yongping Yang & Baoshan Zhang & Jeffrey C. Boyington , 2024. "Cleavage-intermediate Lassa virus trimer elicits neutralizing responses, identifies neutralizing nanobodies, and reveals an apex-situated site-of-vulnerability," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Leire Campos-Mata & Benjamin Trinité & Andrea Modrego & Sonia Tejedor Vaquero & Edwards Pradenas & Anna Pons-Grífols & Natalia Rodrigo Melero & Diego Carlero & Silvia Marfil & César Santiago & Dàlia R, 2024. "A monoclonal antibody targeting a large surface of the receptor binding motif shows pan-neutralizing SARS-CoV-2 activity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Emanuele Andreano & Ida Paciello & Silvia Marchese & Lorena Donnici & Giulio Pierleoni & Giulia Piccini & Noemi Manganaro & Elisa Pantano & Valentina Abbiento & Piero Pileri & Linda Benincasa & Ginevr, 2022. "Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Rajeshwer S. Sankhala & Kerri G. Lal & Jaime L. Jensen & Vincent Dussupt & Letzibeth Mendez-Rivera & Hongjun Bai & Lindsay Wieczorek & Sandra V. Mayer & Michelle Zemil & Danielle A. Wagner & Samantha , 2024. "Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Davida S. Smyth & Monica Trujillo & Devon A. Gregory & Kristen Cheung & Anna Gao & Maddie Graham & Yue Guan & Caitlyn Guldenpfennig & Irene Hoxie & Sherin Kannoly & Nanami Kubota & Terri D. Lyddon & M, 2022. "Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Tingting Li & Xiaojian Han & Chenjian Gu & Hangtian Guo & Huajun Zhang & Yingming Wang & Chao Hu & Kai Wang & Fengjiang Liu & Feiyang Luo & Yanan Zhang & Jie Hu & Wang Wang & Shenglong Li & Yanan Hao , 2021. "Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Mingxi Li & Yifei Ren & Zhen Qin Aw & Bo Chen & Ziqing Yang & Yuqing Lei & Lin Cheng & Qingtai Liang & Junxian Hong & Yiling Yang & Jing Chen & Yi Hao Wong & Jing Wei & Sisi Shan & Senyan Zhang & Jiwa, 2022. "Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Chengzi I. Kaku & Tyler N. Starr & Panpan Zhou & Haley L. Dugan & Paul Khalifé & Ge Song & Elizabeth R. Champney & Daniel W. Mielcarz & James C. Geoghegan & Dennis R. Burton & Raiees Andrabi & Jesse D, 2023. "Evolution of antibody immunity following Omicron BA.1 breakthrough infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Shawn B. Egri & Xue Wang & Marco A. Díaz-Salinas & Jeremy Luban & Natalya V. Dudkina & James B. Munro & Kuang Shen, 2023. "Detergent modulates the conformational equilibrium of SARS-CoV-2 Spike during cryo-EM structural determination," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Ian A. Durie & Zahra R. Tehrani & Elif Karaaslan & Teresa E. Sorvillo & Jack McGuire & Joseph W. Golden & Stephen R. Welch & Markus H. Kainulainen & Jessica R. Harmon & Jarrod J. Mousa & David Gonzale, 2022. "Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Romain Rouet & Jake Y. Henry & Matt D. Johansen & Meghna Sobti & Harikrishnan Balachandran & David B. Langley & Gregory J. Walker & Helen Lenthall & Jennifer Jackson & Stephanie Ubiparipovic & Ohan Ma, 2023. "Broadly neutralizing SARS-CoV-2 antibodies through epitope-based selection from convalescent patients," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Chunyan Wang & Emma L. Hesketh & Tatiana M. Shamorkina & Wentao Li & Peter J. Franken & Dubravka Drabek & Rien Haperen & Sarah Townend & Frank J. M. Kuppeveld & Frank Grosveld & Neil A. Ranson & Joost, 2022. "Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Zhiqiang Ku & Xuping Xie & Jianqing Lin & Peng Gao & Bin Wu & Abbas El Sahili & Hang Su & Yang Liu & Xiaohua Ye & Eddie Yongjun Tan & Xin Li & Xuejun Fan & Boon Chong Goh & Wei Xiong & Hannah Boyd & A, 2022. "Engineering SARS-CoV-2 specific cocktail antibodies into a bispecific format improves neutralizing potency and breadth," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Susan K. Vester & Rolle Rahikainen & Irsyad N. A. Khairil Anuar & Rory A. Hills & Tiong Kit Tan & Mark Howarth, 2022. "SpySwitch enables pH- or heat-responsive capture and release for plug-and-display nanoassembly," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Biao Zhou & Runhong Zhou & Bingjie Tang & Jasper Fuk-Woo Chan & Mengxiao Luo & Qiaoli Peng & Shuofeng Yuan & Hang Liu & Bobo Wing-Yee Mok & Bohao Chen & Pui Wang & Vincent Kwok-Man Poon & Hin Chu & Ch, 2022. "A broadly neutralizing antibody protects Syrian hamsters against SARS-CoV-2 Omicron challenge," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Anna R. Mäkelä & Hasan Uğurlu & Liina Hannula & Ravi Kant & Petja Salminen & Riku Fagerlund & Sanna Mäki & Anu Haveri & Tomas Strandin & Lauri Kareinen & Jussi Hepojoki & Suvi Kuivanen & Lev Levanov &, 2023. "Intranasal trimeric sherpabody inhibits SARS-CoV-2 including recent immunoevasive Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Kuan-Ying A. Huang & Xiaorui Chen & Arpita Mohapatra & Hong Thuy Vy Nguyen & Lisa Schimanski & Tiong Kit Tan & Pramila Rijal & Susan K. Vester & Rory A. Hills & Mark Howarth & Jennifer R. Keeffe & Ale, 2023. "Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36106-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.