IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35870-0.html
   My bibliography  Save this article

Development of a versatile nuclease prime editor with upgraded precision

Author

Listed:
  • Xiangyang Li

    (ShanghaiTech University
    Zhejiang Lab)

  • Guiquan Zhang

    (Zhejiang Lab
    Model Animal Research Center at Medical School of Nanjing University)

  • Shisheng Huang

    (Zhejiang Lab)

  • Yao Liu

    (Northwest A&F University)

  • Jin Tang

    (Zhejiang Lab)

  • Mingtian Zhong

    (South China Normal University)

  • Xin Wang

    (ShanghaiTech University)

  • Wenjun Sun

    (ShanghaiTech University)

  • Yuan Yao

    (Zhejiang University
    Zhejiang University)

  • Quanjiang Ji

    (ShanghaiTech University)

  • Xiaolong Wang

    (Northwest A&F University)

  • Jianghuai Liu

    (Model Animal Research Center at Medical School of Nanjing University)

  • Shiqiang Zhu

    (Zhejiang Lab)

  • Xingxu Huang

    (ShanghaiTech University
    Zhejiang Lab)

Abstract

The applicability of nuclease-based form of prime editor (PEn) has been hindered by its complexed editing outcomes. A chemical inhibitor against DNA-PK, which mediates the nonhomologous end joining (NHEJ) pathway, was recently shown to promote precise insertions by PEn. Nevertheless, the intrinsic issues of specificity and toxicity for such a chemical approach necessitate development of alternative strategies. Here, we find that co-introduction of PEn and a NHEJ-restraining, 53BP1-inhibitory ubiquitin variant potently drives precise edits via mitigation of unintended edits, framing a high-activity editing platform (uPEn) apparently complementing the canonical PE. Further developments involve exploring the effective configuration of a homologous region-containing pegRNA (HR-pegRNA). Overall, uPEn can empower high-efficiency installation of insertions (38%), deletions (43%) and replacements (52%) in HEK293T cells. When compared with PE3/5max, uPEn demonstrates superior activities for typically refractory base substitutions, and for small-block edits. Collectively, this work establishes a highly efficient PE platform with broad application potential.

Suggested Citation

  • Xiangyang Li & Guiquan Zhang & Shisheng Huang & Yao Liu & Jin Tang & Mingtian Zhong & Xin Wang & Wenjun Sun & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Jianghuai Liu & Shiqiang Zhu & Xingxu Huang, 2023. "Development of a versatile nuclease prime editor with upgraded precision," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35870-0
    DOI: 10.1038/s41467-023-35870-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35870-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35870-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Myungjae Song & Jung Min Lim & Seonwoo Min & Jeong-Seok Oh & Dong Young Kim & Jae-Sung Woo & Hiroshi Nishimasu & Sung-Rae Cho & Sungroh Yoon & Hyongbum Henry Kim, 2021. "Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Martin Peterka & Nina Akrap & Songyuan Li & Sandra Wimberger & Pei-Pei Hsieh & Dmitrii Degtev & Burcu Bestas & Jack Barr & Stijn Plassche & Patricia Mendoza-Garcia & Saša Šviković & Grzegorz Sienski &, 2022. "Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Andrew V. Anzalone & Peyton B. Randolph & Jessie R. Davis & Alexander A. Sousa & Luke W. Koblan & Jonathan M. Levy & Peter J. Chen & Christopher Wilson & Gregory A. Newby & Aditya Raguram & David R. L, 2019. "Search-and-replace genome editing without double-strand breaks or donor DNA," Nature, Nature, vol. 576(7785), pages 149-157, December.
    4. Jennifer A. Doudna, 2020. "The promise and challenge of therapeutic genome editing," Nature, Nature, vol. 578(7794), pages 229-236, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Sébastien Levesque & Diana Mayorga & Jean-Philippe Fiset & Claudia Goupil & Alexis Duringer & Andréanne Loiselle & Eva Bouchard & Daniel Agudelo & Yannick Doyon, 2022. "Marker-free co-selection for successive rounds of prime editing in human cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Jeonghun Kwon & Minyoung Kim & Seungmin Bae & Anna Jo & Youngho Kim & Jungjoon K. Lee, 2022. "TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Chunwei Zheng & Bin Liu & Xiaolong Dong & Nicholas Gaston & Erik J. Sontheimer & Wen Xue, 2023. "Template-jumping prime editing enables large insertion and exon rewriting in vivo," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Xiaoguang Pan & Kunli Qu & Hao Yuan & Xi Xiang & Christian Anthon & Liubov Pashkova & Xue Liang & Peng Han & Giulia I. Corsi & Fengping Xu & Ping Liu & Jiayan Zhong & Yan Zhou & Tao Ma & Hui Jiang & J, 2022. "Massively targeted evaluation of therapeutic CRISPR off-targets in cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Lisa Maria Riedmayr & Klara Sonnie Hinrichsmeyer & Stefan Bernhard Thalhammer & David Manuel Mittas & Nina Karguth & Dina Yehia Otify & Sybille Böhm & Valentin Johannes Weber & Michael David Bartosche, 2023. "mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Zhaohui Zhong & Guanqing Liu & Zhongjie Tang & Shuyue Xiang & Liang Yang & Lan Huang & Yao He & Tingting Fan & Shishi Liu & Xuelian Zheng & Tao Zhang & Yiping Qi & Jian Huang & Yong Zhang, 2023. "Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. You Li & Zhiqiang Li & Ruiling Chen & Min Lian & Hanxiao Wang & Yiran Wei & Zhengrui You & Jun Zhang & Bo Li & Yikang Li & Bingyuan Huang & Yong Chen & Qiaoyan Liu & Zhuwan Lyu & Xueying Liang & Qi Mi, 2023. "A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Yi-Li Feng & Qian Liu & Ruo-Dan Chen & Si-Cheng Liu & Zhi-Cheng Huang & Kun-Ming Liu & Xiao-Ying Yang & An-Yong Xie, 2022. "DNA nicks induce mutational signatures associated with BRCA1 deficiency," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Xiaosa Li & Lina Zhou & Bao-Qing Gao & Guangye Li & Xiao Wang & Ying Wang & Jia Wei & Wenyan Han & Zixian Wang & Jifang Li & Runze Gao & Junjie Zhu & Wenchao Xu & Jing Wu & Bei Yang & Xiaodong Sun & L, 2022. "Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Marion Rosello & Malo Serafini & Luca Mignani & Dario Finazzi & Carine Giovannangeli & Marina C. Mione & Jean-Paul Concordet & Filippo Del Bene, 2022. "Disease modeling by efficient genome editing using a near PAM-less base editor in vivo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Hongzhi Zeng & Qichen Yuan & Fei Peng & Dacheng Ma & Ananya Lingineni & Kelly Chee & Peretz Gilberd & Emmanuel C. Osikpa & Zheng Sun & Xue Gao, 2023. "A split and inducible adenine base editor for precise in vivo base editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Roberta Esposito & Andrés Lanzós & Tina Uroda & Sunandini Ramnarayanan & Isabel Büchi & Taisia Polidori & Hugo Guillen-Ramirez & Ante Mihaljevic & Bernard Mefi Merlin & Lia Mela & Eugenio Zoni & Lusin, 2023. "Tumour mutations in long noncoding RNAs enhance cell fitness," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    20. J. Ferreira da Silva & G. P. Oliveira & E. A. Arasa-Verge & C. Kagiou & A. Moretton & G. Timelthaler & J. Jiricny & J. I. Loizou, 2022. "Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35870-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.