IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35430-y.html
   My bibliography  Save this article

Detecting and quantifying liquid–liquid phase separation in living cells by model-free calibrated half-bleaching

Author

Listed:
  • Fernando Muzzopappa

    (CNRS, UPS)

  • Johan Hummert

    (University of Birmingham
    Universities of Birmingham and Nottingham)

  • Michela Anfossi

    (CNRS, UPS)

  • Stanimir Asenov Tashev

    (University of Birmingham
    Universities of Birmingham and Nottingham)

  • Dirk-Peter Herten

    (University of Birmingham
    Universities of Birmingham and Nottingham)

  • Fabian Erdel

    (CNRS, UPS)

Abstract

Cells contain numerous substructures that have been proposed to form via liquid–liquid phase separation (LLPS). It is currently debated how to reliably distinguish LLPS from other mechanisms. Here, we benchmark different methods using well-controlled model systems in vitro and in living cells. We find that 1,6-hexanediol treatment and classical FRAP fail to distinguish LLPS from the alternative scenario of molecules binding to spatially clustered binding sites without phase-separating. In contrast, the preferential internal mixing seen in half-bleach experiments robustly distinguishes both mechanisms. We introduce a workflow termed model-free calibrated half-FRAP (MOCHA-FRAP) to probe the barrier at the condensate interface that is responsible for preferential internal mixing. We use it to study components of heterochromatin foci, nucleoli, stress granules and nuage granules, and show that the strength of the interfacial barrier increases in this order. We anticipate that MOCHA-FRAP will help uncover the mechanistic basis of biomolecular condensates in living cells.

Suggested Citation

  • Fernando Muzzopappa & Johan Hummert & Michela Anfossi & Stanimir Asenov Tashev & Dirk-Peter Herten & Fabian Erdel, 2022. "Detecting and quantifying liquid–liquid phase separation in living cells by model-free calibrated half-bleaching," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35430-y
    DOI: 10.1038/s41467-022-35430-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35430-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35430-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin S. Schuster & Ellen H. Reed & Ranganath Parthasarathy & Craig N. Jahnke & Reese M. Caldwell & Jessica G. Bermudez & Holly Ramage & Matthew C. Good & Daniel A. Hammer, 2018. "Controllable protein phase separation and modular recruitment to form responsive membraneless organelles," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Peter R. Nielsen & Daniel Nietlispach & Helen R. Mott & Juliana Callaghan & Andrew Bannister & Tony Kouzarides & Alexey G. Murzin & Natalia V. Murzina & Ernest D. Laue, 2002. "Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9," Nature, Nature, vol. 416(6876), pages 103-107, March.
    3. Bernardo Gouveia & Yoonji Kim & Joshua W. Shaevitz & Sabine Petry & Howard A. Stone & Clifford P. Brangwynne, 2022. "Capillary forces generated by biomolecular condensates," Nature, Nature, vol. 609(7926), pages 255-264, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dane Marijan & Evgenia A. Momchilova & Daniel Burns & Sahil Chandhok & Richard Zapf & Holger Wille & Davit A. Potoyan & Timothy E. Audas, 2024. "Protein thermal sensing regulates physiological amyloid aggregation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Khalil Joron & Juliane Oliveira Viegas & Liam Haas-Neill & Sariel Bier & Paz Drori & Shani Dvir & Patrick Siang Lin Lim & Sarah Rauscher & Eran Meshorer & Eitan Lerner, 2023. "Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halima H. Schede & Pradeep Natarajan & Arup K. Chakraborty & Krishna Shrinivas, 2023. "A model for organization and regulation of nuclear condensates by gene activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Cheng Qi & Xudong Ma & Qi Zeng & Zhangwei Huang & Shanshan Zhang & Xiaokang Deng & Tiantian Kong & Zhou Liu, 2024. "Multicompartmental coacervate-based protocell by spontaneous droplet evaporation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Mina Farag & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2023. "Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Yohan Lee & Sujin Park & Feng Yuan & Carl C. Hayden & Liping Wang & Eileen M. Lafer & Siyoung Q. Choi & Jeanne C. Stachowiak, 2023. "Transmembrane coupling of liquid-like protein condensates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Vivian Yeong & Jou-wen Wang & Justin M. Horn & Allie C. Obermeyer, 2022. "Intracellular phase separation of globular proteins facilitated by short cationic peptides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yuri Hong & Saeed Najafi & Thomas Casey & Joan-Emma Shea & Song-I Han & Dong Soo Hwang, 2022. "Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Beatrice Ramm & Dominik Schumacher & Andrea Harms & Tamara Heermann & Philipp Klos & Franziska Müller & Petra Schwille & Lotte Søgaard-Andersen, 2023. "Biomolecular condensate drives polymerization and bundling of the bacterial tubulin FtsZ to regulate cell division," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    9. Agustín Mangiarotti & Macarena Siri & Nicky W. Tam & Ziliang Zhao & Leonel Malacrida & Rumiana Dimova, 2023. "Biomolecular condensates modulate membrane lipid packing and hydration," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Jason X. Liu & Mikko P. Haataja & Andrej Košmrlj & Sujit S. Datta & Craig B. Arnold & Rodney D. Priestley, 2023. "Liquid–liquid phase separation within fibrillar networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Shang Dai & Zhenming Xie & Binqiang Wang & Rui Ye & Xinwen Ou & Chen Wang & Ning Yu & Cheng Huang & Jie Zhao & Chunhui Cai & Furong Zhang & Damiano Buratto & Taimoor Khan & Yan Qiao & Yuejin Hua & Ruh, 2023. "An inorganic mineral-based protocell with prebiotic radiation fitness," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Agustín Mangiarotti & Nannan Chen & Ziliang Zhao & Reinhard Lipowsky & Rumiana Dimova, 2023. "Wetting and complex remodeling of membranes by biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Marcos Gil-Garcia & Ana I. Benítez-Mateos & Marcell Papp & Florence Stoffel & Chiara Morelli & Karl Normak & Katarzyna Makasewicz & Lenka Faltova & Francesca Paradisi & Paolo Arosio, 2024. "Local environment in biomolecular condensates modulates enzymatic activity across length scales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Manjia Li & Byung Min Park & Xin Dai & Yingjie Xu & Jinqing Huang & Fei Sun, 2022. "Controlling synthetic membraneless organelles by a red-light-dependent singlet oxygen-generating protein," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35430-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.