IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35271-9.html
   My bibliography  Save this article

Photo-induced stress relaxation in reconfigurable disulfide-crosslinked supramolecular films visualized by dynamic wrinkling

Author

Listed:
  • Shuzhen Yan

    (Shanghai Jiao Tong University)

  • Kaiming Hu

    (Shanghai Jiao Tong University)

  • Shuai Chen

    (Shanghai Jiao Tong University)

  • Tiantian Li

    (Shanghai Jiao Tong University)

  • Wenming Zhang

    (Shanghai Jiao Tong University)

  • Jie Yin

    (Shanghai Jiao Tong University)

  • Xuesong Jiang

    (Shanghai Jiao Tong University)

Abstract

Stress relaxation in reconfigurable supramolecular polymer networks is strongly related to intermolecular behavior. However, the relationship between molecular motion and macroscopic mechanics is usually vague, and the visualization of internal stress reflecting precise regulation of molecules remains challenging. Here, we present a strategy for visualizing photo-driven stress relaxation induced by infinitesimal perturbations in the intermolecular exchange reaction via reprogrammable wrinkle patterns. The supramolecular films exhibit visible changes in microscopic wrinkle topography through ultraviolet (UV)-induced dynamic disulfide exchange reaction. In accordance with the trans-scale theoretical models, which quantitatively evaluate the chemical-dependent mechanical stresses in the supramolecular network, the unexposed disordered wrinkles evolved into highly oriented patterns and underwent subsequent mutations after thermal treatment. The stress-sensitive wrinkle macro-patterns can be repetitively written/erased through network topology rearrangement using different stimuli. This strategy provides an approach for visualizing and understanding the molecular behavior from dynamic chemistry to mechanical changes, and directly programming wrinkle patterns with regulated structures.

Suggested Citation

  • Shuzhen Yan & Kaiming Hu & Shuai Chen & Tiantian Li & Wenming Zhang & Jie Yin & Xuesong Jiang, 2022. "Photo-induced stress relaxation in reconfigurable disulfide-crosslinked supramolecular films visualized by dynamic wrinkling," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35271-9
    DOI: 10.1038/s41467-022-35271-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35271-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35271-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sung Yun Son & Giwon Lee & Hongyu Wang & Stephanie Samson & Qingshan Wei & Yong Zhu & Wei You, 2022. "Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yu Zheng & Zhiao Yu & Song Zhang & Xian Kong & Wesley Michaels & Weichen Wang & Gan Chen & Deyu Liu & Jian-Cheng Lai & Nathaniel Prine & Weimin Zhang & Shayla Nikzad & Christopher B. Cooper & Donglai , 2021. "A molecular design approach towards elastic and multifunctional polymer electronics," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Mutian Hua & Shuwang Wu & Yanfei Ma & Yusen Zhao & Zilin Chen & Imri Frenkel & Joseph Strzalka & Hua Zhou & Xinyuan Zhu & Ximin He, 2021. "Strong tough hydrogels via the synergy of freeze-casting and salting out," Nature, Nature, vol. 590(7847), pages 594-599, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiansheng Zhang & Hongwei Yan & Chongzhi Xu & Xia Dong & Yu Wang & Aiping Fu & Hao Li & Jin Yong Lee & Sheng Zhang & Jiahua Ni & Min Gao & Jing Wang & Jinpeng Yu & Shuzhi Sam Ge & Ming Liang Jin & Lil, 2023. "Skin-like cryogel electronics from suppressed-freezing tuned polymer amorphization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Hung-Chin Wu & Shayla Nikzad & Chenxin Zhu & Hongping Yan & Yang Li & Weijun Niu & James R. Matthews & Jie Xu & Naoji Matsuhisa & Prajwal Kammardi Arunachala & Reza Rastak & Christian Linder & Yu-Qing, 2023. "Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Bin Xue & Zoobia Bashir & Yachong Guo & Wenting Yu & Wenxu Sun & Yiran Li & Yiyang Zhang & Meng Qin & Wei Wang & Yi Cao, 2023. "Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Quyang Liu & Xinyu Dong & Haobo Qi & Haoqi Zhang & Tian Li & Yijing Zhao & Guanjin Li & Wei Zhai, 2024. "3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Yong Hu & Jennifer L. Gottfried & Rose Pesce-Rodriguez & Chi-Chin Wu & Scott D. Walck & Zhiyu Liu & Sangeeth Balakrishnan & Scott Broderick & Zipeng Guo & Qiang Zhang & Lu An & Revant Adlakha & Mostaf, 2022. "Releasing chemical energy in spatially programmed ferroelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Shuihong Zhu & Sen Wang & Yifan Huang & Qiyun Tang & Tianqi Fu & Riyan Su & Chaoyu Fan & Shuang Xia & Pooi See Lee & Youhui Lin, 2024. "Bioinspired structural hydrogels with highly ordered hierarchical orientations by flow-induced alignment of nanofibrils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Jingjun Wu & Jing Guo & Changhong Linghu & Yahui Lu & Jizhou Song & Tao Xie & Qian Zhao, 2021. "Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Wenqian He & Meilin Wang & Guangkai Mei & Shiyong Liu & Abdul Qadeer Khan & Chao Li & Danyang Feng & Zihao Su & Lili Bao & Ge Wang & Enzhao Liu & Yutian Zhu & Jie Bai & Meifang Zhu & Xiang Zhou & Zunf, 2024. "Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Dan Xu & Yang Yang & Lukas Emmerich & Yong Wang & Kai Zhang, 2023. "Divergent Deborah number-dependent transition from homogeneity to heterogeneity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Siheng Wang & Le Yu & Shanshan Wang & Lei Zhang & Lu Chen & Xu Xu & Zhanqian Song & He Liu & Chaoji Chen, 2022. "Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Jirong Yang & Zhigang Chen & Chongjian Gao & Juan Liu & Kaizheng Liu & Xiao Wang & Xiaoling Pan & Guocheng Wang & Hongxun Sang & Haobo Pan & Wenguang Liu & Changshun Ruan, 2024. "A mechanical-assisted post-bioprinting strategy for challenging bone defects repair," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Donghwan Ji & Joseph Liu & Jiayu Zhao & Minghao Li & Yumi Rho & Hwansoo Shin & Tae Hee Han & Jinhye Bae, 2024. "Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Jiqiang Wang & Baohu Wu & Peng Wei & Shengtong Sun & Peiyi Wu, 2022. "Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Hongxing Wang & Longdi Cheng & Jianyong Yu & Yang Si & Bin Ding, 2024. "Biomimetic Bouligand chiral fibers array enables strong and superelastic ceramic aerogels," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35271-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.