IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34577-y.html
   My bibliography  Save this article

Replication collisions induced by de-repressed S-phase transcription are connected with malignant transformation of adult stem cells

Author

Listed:
  • Ting Zhang

    (Max-Planck-Institute for Heart and Lung Research)

  • Carsten Künne

    (Max-Planck-Institute for Heart and Lung Research
    Max Planck Institute for Heart and Lung Research)

  • Dong Ding

    (Max-Planck-Institute for Heart and Lung Research)

  • Stefan Günther

    (Max-Planck-Institute for Heart and Lung Research
    Max Planck Institute for Heart and Lung Research)

  • Xinyue Guo

    (Max-Planck-Institute for Heart and Lung Research)

  • Yonggang Zhou

    (Max-Planck-Institute for Heart and Lung Research)

  • Xuejun Yuan

    (Max-Planck-Institute for Heart and Lung Research)

  • Thomas Braun

    (Max-Planck-Institute for Heart and Lung Research
    German Center for Cardiovascular Research (DZHK)
    German Center for Lung Research (DZL))

Abstract

Transcription replication collisions (TRCs) constitute a major intrinsic source of genome instability but conclusive evidence for a causal role of TRCs in tumor initiation is missing. We discover that lack of the H4K20-dimethyltransferase KMT5B (also known as SUV4-20H1) in muscle stem cells de-represses S-phase transcription by increasing H4K20me1 levels, which induces TRCs and aberrant R-loops in oncogenic genes. The resulting replication stress and aberrant mitosis activate ATR-RPA32-P53 signaling, promoting cellular senescence, which turns into rapid rhabdomyosarcoma formation when p53 is absent. Inhibition of S-phase transcription ameliorates TRCs and formation of R-loops in Kmt5b-deficient MuSCs, validating the crucial role of H4K20me1-dependent, tightly controlled S-phase transcription for preventing collision errors. Low KMT5B expression is prevalent in human sarcomas and associated with tumor recurrence, suggesting a common function of KMT5B in sarcoma formation. The study uncovers decisive functions of KMT5B for maintaining genome stability by repressing S-phase transcription via control of H4K20me1 levels.

Suggested Citation

  • Ting Zhang & Carsten Künne & Dong Ding & Stefan Günther & Xinyue Guo & Yonggang Zhou & Xuejun Yuan & Thomas Braun, 2022. "Replication collisions induced by de-repressed S-phase transcription are connected with malignant transformation of adult stem cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34577-y
    DOI: 10.1038/s41467-022-34577-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34577-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34577-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Relaix & M. Bencze & M. J. Borok & A. Vartanian & F. Gattazzo & D. Mademtzoglou & S. Perez-Diaz & A. Prola & P. C. Reyes-Fernandez & A. Rotini & Taglietti, 2021. "Perspectives on skeletal muscle stem cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Panagiotis Kotsantis & Lara Marques Silva & Sarah Irmscher & Rebecca M. Jones & Lisa Folkes & Natalia Gromak & Eva Petermann, 2016. "Increased global transcription activity as a mechanism of replication stress in cancer," Nature Communications, Nature, vol. 7(1), pages 1-13, December.
    3. Morgane Macheret & Thanos D. Halazonetis, 2018. "Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress," Nature, Nature, vol. 555(7694), pages 112-116, March.
    4. Muhammad Shoaib & Qinming Chen & Xiangyan Shi & Nidhi Nair & Chinmayi Prasanna & Renliang Yang & David Walter & Klaus S. Frederiksen & Hjorleifur Einarsson & J. Peter Svensson & Chuan Fa Liu & Karl Ek, 2021. "Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Christoph Lepper & Simon J. Conway & Chen-Ming Fan, 2009. "Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements," Nature, Nature, vol. 460(7255), pages 627-631, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elias Einig & Chao Jin & Valentina Andrioletti & Boris Macek & Nikita Popov, 2023. "RNAPII-dependent ATM signaling at collisions with replication forks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Taichi Igarashi & Marianne Mazevet & Takaaki Yasuhara & Kimiyoshi Yano & Akifumi Mochizuki & Makoto Nishino & Tatsuya Yoshida & Yukihiro Yoshida & Nobuhiko Takamatsu & Akihide Yoshimi & Kouya Shiraish, 2023. "An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Shaun Scaramuzza & Rebecca M. Jones & Martina Muste Sadurni & Alicja Reynolds-Winczura & Divyasree Poovathumkadavil & Abigail Farrell & Toyoaki Natsume & Patricia Rojas & Cyntia Fernandez Cuesta & Mas, 2023. "TRAIP resolves DNA replication-transcription conflicts during the S-phase of unperturbed cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Silvia Peripolli & Leticia Meneguello & Chiara Perrod & Tanya Singh & Harshil Patel & Sazia T. Rahman & Koshiro Kiso & Peter Thorpe & Vincenzo Calvanese & Cosetta Bertoli & Robertus A. M. de Bruin, 2024. "Oncogenic c-Myc induces replication stress by increasing cohesins chromatin occupancy in a CTCF-dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Samuel Hume & Claudia P. Grou & Pauline Lascaux & Vincenzo D’Angiolella & Arnaud J. Legrand & Kristijan Ramadan & Grigory L. Dianov, 2021. "The NUCKS1-SKP2-p21/p27 axis controls S phase entry," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Jiayin Peng & Lili Han & Biao Liu & Jiawen Song & Yuang Wang & Kunpeng Wang & Qian Guo & XinYan Liu & Yu Li & Jujin Zhang & Wenqing Wu & Sheng Li & Xin Fu & Cheng-le Zhuang & Weikang Zhang & Shengbao , 2023. "Gli1 marks a sentinel muscle stem cell population for muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Justin G. Boyer & Jiuzhou Huo & Sarah Han & Julian R. Havens & Vikram Prasad & Brian L. Lin & David A. Kass & Taejeong Song & Sakthivel Sadayappan & Ramzi J. Khairallah & Christopher W. Ward & Jeffery, 2022. "Depletion of skeletal muscle satellite cells attenuates pathology in muscular dystrophy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Tomoko Yamamori Morita & Jie Yu & Yukie Kashima & Ryo Kamata & Gaku Yamamoto & Tatsunori Minamide & Chiaki Mashima & Miyuki Yoshiya & Yuta Sakae & Toyohiro Yamauchi & Yumi Hakozaki & Shun-ichiro Kagey, 2023. "CDC7 inhibition induces replication stress-mediated aneuploid cells with an inflammatory phenotype sensitizing tumors to immune checkpoint blockade," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Lorenzo Corazzi & Vivien S. Ionasz & Sergej Andrejev & Li-Chin Wang & Athanasios Vouzas & Marco Giaisi & Giulia Di Muzio & Boyu Ding & Anna J. M. Marx & Jonas Henkenjohann & Michael M. Allers & David , 2024. "Linear interaction between replication and transcription shapes DNA break dynamics at recurrent DNA break Clusters," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Karl-Uwe Reusswig & Julia Bittmann & Martina Peritore & Mathilde Courtes & Benjamin Pardo & Michael Wierer & Matthias Mann & Boris Pfander, 2022. "Unscheduled DNA replication in G1 causes genome instability and damage signatures indicative of replication collisions," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    11. Chia-Yu Guh & Hong-Jhih Shen & Liv WeiChien Chen & Pei-Chen Chiu & I-Hsin Liao & Chen-Chia Lo & Yunfei Chen & Yu-Hung Hsieh & Ting-Chia Chang & Chien-Ping Yen & Yi-Yun Chen & Tom Wei-Wu Chen & Liuh-Yo, 2022. "XPF activates break-induced telomere synthesis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Rajashree A. Deshpande & Alberto Marin-Gonzalez & Hannah K. Barnes & Phillip R. Woolley & Taekjip Ha & Tanya T. Paull, 2023. "Genome-wide analysis of DNA-PK-bound MRN cleavage products supports a sequential model of DSB repair pathway choice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Daniel Gómez-Cabello & George Pappas & Diana Aguilar-Morante & Christoffel Dinant & Jiri Bartek, 2022. "CtIP-dependent nascent RNA expression flanking DNA breaks guides the choice of DNA repair pathway," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Suyang Zhang & Feng Yang & Yile Huang & Liangqiang He & Yuying Li & Yi Ching Esther Wan & Yingzhe Ding & Kui Ming Chan & Ting Xie & Hao Sun & Huating Wang, 2023. "ATF3 induction prevents precocious activation of skeletal muscle stem cell by regulating H2B expression," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    15. Bertrand Theulot & Laurent Lacroix & Jean-Michel Arbona & Gael A. Millot & Etienne Jean & Corinne Cruaud & Jade Pellet & Florence Proux & Magali Hennion & Stefan Engelen & Arnaud Lemainque & Benjamin , 2022. "Genome-wide mapping of individual replication fork velocities using nanopore sequencing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Martin Andrs & Henriette Stoy & Barbora Boleslavska & Nagaraja Chappidi & Radhakrishnan Kanagaraj & Zuzana Nascakova & Shruti Menon & Satyajeet Rao & Anna Oravetzova & Jana Dobrovolna & Kalpana Surend, 2023. "Excessive reactive oxygen species induce transcription-dependent replication stress," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Demis Menolfi & Brian J. Lee & Hanwen Zhang & Wenxia Jiang & Nicole E. Bowen & Yunyue Wang & Junfei Zhao & Antony Holmes & Steven Gershik & Raul Rabadan & Baek Kim & Shan Zha, 2023. "ATR kinase supports normal proliferation in the early S phase by preventing replication resource exhaustion," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. David Rombaut & Carine Lefèvre & Tony Rached & Sabrina Bondu & Anne Letessier & Raphael M. Mangione & Batoul Farhat & Auriane Lesieur-Pasquier & Daisy Castillo-Guzman & Ismael Boussaid & Chloé Friedri, 2024. "Accelerated DNA replication fork speed due to loss of R-loops in myelodysplastic syndromes with SF3B1 mutation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34577-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.