IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34530-z.html
   My bibliography  Save this article

Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine

Author

Listed:
  • Luke J. Dowman

    (The University of Sydney
    The University of Sydney)

  • Sameer S. Kulkarni

    (The University of Sydney
    The University of Sydney)

  • Juan V. Alegre-Requena

    (Colorado State University)

  • Andrew M. Giltrap

    (The University of Sydney
    The University of Sydney)

  • Alexander R. Norman

    (The University of Sydney
    The University of Sydney)

  • Ashish Sharma

    (The University of Sydney
    The University of Sydney)

  • Liliana C. Gallegos

    (Colorado State University)

  • Angus S. Mackay

    (The University of Sydney
    The University of Sydney)

  • Adarshi P. Welegedara

    (Australian National University)

  • Emma E. Watson

    (The University of Sydney
    The University of Sydney)

  • Damian Raad

    (Australian National University)

  • Gerhard Niederacher

    (University of Vienna)

  • Susanne Huhmann

    (University of Vienna)

  • Nicholas Proschogo

    (The University of Sydney)

  • Karishma Patel

    (The University of Sydney)

  • Mark Larance

    (The University of Sydney)

  • Christian F. W. Becker

    (University of Vienna)

  • Joel P. Mackay

    (The University of Sydney)

  • Girish Lakhwani

    (The University of Sydney
    The University of Sydney)

  • Thomas Huber

    (Australian National University)

  • Robert S. Paton

    (Colorado State University)

  • Richard J. Payne

    (The University of Sydney
    The University of Sydney)

Abstract

The importance of modified peptides and proteins for applications in drug discovery, and for illuminating biological processes at the molecular level, is fueling a demand for efficient methods that facilitate the precise modification of these biomolecules. Herein, we describe the development of a photocatalytic method for the rapid and efficient dimerization and site-specific functionalization of peptide and protein diselenides. This methodology, dubbed the photocatalytic diselenide contraction, involves irradiation at 450 nm in the presence of an iridium photocatalyst and a phosphine and results in rapid and clean conversion of diselenides to reductively stable selenoethers. A mechanism for this photocatalytic transformation is proposed, which is supported by photoluminescence spectroscopy and density functional theory calculations. The utility of the photocatalytic diselenide contraction transformation is highlighted through the dimerization of selenopeptides, and by the generation of two families of protein conjugates via the site-selective modification of calmodulin containing the 21st amino acid selenocysteine, and the C-terminal modification of a ubiquitin diselenide.

Suggested Citation

  • Luke J. Dowman & Sameer S. Kulkarni & Juan V. Alegre-Requena & Andrew M. Giltrap & Alexander R. Norman & Ashish Sharma & Liliana C. Gallegos & Angus S. Mackay & Adarshi P. Welegedara & Emma E. Watson , 2022. "Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34530-z
    DOI: 10.1038/s41467-022-34530-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34530-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34530-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jennifer A. Prescher & Danielle H. Dube & Carolyn R. Bertozzi, 2004. "Chemical remodelling of cell surfaces in living animals," Nature, Nature, vol. 430(7002), pages 873-877, August.
    2. Brian Josephson & Charlie Fehl & Patrick G. Isenegger & Simon Nadal & Tom H. Wright & Adeline W. J. Poh & Ben J. Bower & Andrew M. Giltrap & Lifu Chen & Christopher Batchelor-McAuley & Grace Roper & O, 2020. "Light-driven post-translational installation of reactive protein side chains," Nature, Nature, vol. 585(7826), pages 530-537, September.
    3. Heinz Neumann & Kaihang Wang & Lloyd Davis & Maria Garcia-Alai & Jason W. Chin, 2010. "Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome," Nature, Nature, vol. 464(7287), pages 441-444, March.
    4. Michael T. Taylor & Jennifer E. Nelson & Marcos G. Suero & Matthew J. Gaunt, 2018. "A protein functionalization platform based on selective reactions at methionine residues," Nature, Nature, vol. 562(7728), pages 563-568, October.
    5. Yang Yang & Fan Liu & Vojtech Franc & Liem Andhyk Halim & Huub Schellekens & Albert J. R. Heck, 2016. "Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuyue Wu & Wencheng Wang & Chi Zhang & Zhenlong You & Yinyan Zeng & Yinzhu Lu & Suhui Zhang & Xingrui Li & Chaoyong Yang & Yanling Song, 2023. "Capturing nascent extracellular vesicles by metabolic glycan labeling-assisted microfluidics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Molly F. Parsons & Matthew F. Allan & Shanshan Li & Tyson R. Shepherd & Sakul Ratanalert & Kaiming Zhang & Krista M. Pullen & Wah Chiu & Silvi Rouskin & Mark Bathe, 2023. "3D RNA-scaffolded wireframe origami," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Mengzhun Guo & Kai Zhao & Liang Guo & Rui Zhou & Qiuju He & Kuan Lu & Tian Li & Dandan Liu & Jinfeng Chen & Jing Tang & Xin Fu & Jinyun Zhou & Bei Zheng & Samuel I. Mann & Yongdeng Zhang & Jing Huang , 2023. "Copper assisted sequence-specific chemical protein conjugation at a single backbone amide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Sébastien Depienne & Mohammed Bouzelha & Emmanuelle Courtois & Karine Pavageau & Pierre-Alban Lalys & Maia Marchand & Dimitri Alvarez-Dorta & Steven Nedellec & Laura Marín-Fernández & Cyrille Grandjea, 2023. "Click-electrochemistry for the rapid labeling of virus, bacteria and cell surfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Joonsu Han & Rimsha Bhatta & Yusheng Liu & Yang Bo & Alberto Elosegui-Artola & Hua Wang, 2023. "Metabolic glycan labeling immobilizes dendritic cell membrane and enhances antitumor efficacy of dendritic cell vaccine," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Anne-Lise Marie & Yunfan Gao & Alexander R. Ivanov, 2024. "Native N-glycome profiling of single cells and ng-level blood isolates using label-free capillary electrophoresis-mass spectrometry," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Ruoqian Xie & Wanlu Li & Yuhua Ge & Yutong Zhou & Guolan Xiao & Qin Zhao & Yunxi Han & Yangyan Li & Gang Chen, 2024. "Late-stage guanine C8–H alkylation of nucleosides, nucleotides, and oligonucleotides via photo-mediated Minisci reaction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Xiao Tian & Lingna Zheng & Changjiang Wang & Yida Han & Yujie Li & Tongxiao Cui & Jialin Liu & Chuanming Liu & Guogeng Jia & Lujie Yang & Yi Hsu & Chen Zeng & Lijun Ding & Chu Wang & Bo Cheng & Meng W, 2023. "Selenium-based metabolic oligosaccharide engineering strategy for quantitative glycan detection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Jairus Rossi, 2013. "The Socionatural Engineering of Reductionist Metaphors: A Political Ecology of Synthetic Biology," Environment and Planning A, , vol. 45(5), pages 1127-1143, May.
    10. Diogo Bessa-Neto & Gerti Beliu & Alexander Kuhlemann & Valeria Pecoraro & Sören Doose & Natacha Retailleau & Nicolas Chevrier & David Perrais & Markus Sauer & Daniel Choquet, 2021. "Bioorthogonal labeling of transmembrane proteins with non-canonical amino acids unveils masked epitopes in live neurons," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. Luis F. Schachner & Christopher Mullen & Wilson Phung & Joshua D. Hinkle & Michelle Irwin Beardsley & Tracy Bentley & Peter Day & Christina Tsai & Siddharth Sukumaran & Tomasz Baginski & Danielle DiCa, 2024. "Exposing the molecular heterogeneity of glycosylated biotherapeutics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Shenqiang Wang & Ying Zhang & Yanfang Wang & Yinxian Yang & Sheng Zhao & Tao Sheng & Yuqi Zhang & Zhen Gu & Jinqiang Wang & Jicheng Yu, 2023. "An in situ dual-anchoring strategy for enhanced immobilization of PD-L1 to treat autoimmune diseases," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Clinton A. L. McFeely & Bipasana Shakya & Chelsea A. Makovsky & Aidan K. Haney & T. Ashton Cropp & Matthew C. T. Hartman, 2023. "Extensive breaking of genetic code degeneracy with non-canonical amino acids," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Yong Wang & Jingming Zhang & Boyang Han & Linzhi Tan & Wenkang Cai & Yuxuan Li & Yeyu Su & Yutong Yu & Xin Wang & Xiaojiang Duan & Haoyu Wang & Xiaomeng Shi & Jing Wang & Xing Yang & Tao Liu, 2023. "Noncanonical amino acids as doubly bio-orthogonal handles for one-pot preparation of protein multiconjugates," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Rimsha Bhatta & Joonsu Han & Yusheng Liu & Yang Bo & David Lee & Jiadiao Zhou & Yueji Wang & Erik Russell Nelson & Qian Chen & Xiaojia Shelly Zhang & Wael Hassaneen & Hua Wang, 2023. "Metabolic tagging of extracellular vesicles and development of enhanced extracellular vesicle based cancer vaccines," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34530-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.