IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34348-9.html
   My bibliography  Save this article

The assembly of mammalian SWI/SNF chromatin remodeling complexes is regulated by lysine-methylation dependent proteolysis

Author

Listed:
  • Pengfei Guo

    (University of Nevada)

  • Nam Hoang

    (University of Nevada)

  • Joseph Sanchez

    (University of Nevada)

  • Elaine H. Zhang

    (University of California)

  • Keshari Rajawasam

    (University of Nevada)

  • Kristiana Trinidad

    (University of Nevada)

  • Hong Sun

    (University of Nevada)

  • Hui Zhang

    (University of Nevada)

Abstract

The assembly of mammalian SWI/SNF chromatin remodeling complexes is developmentally programed, and loss/mutations of SWI/SNF subunits alter the levels of other components through proteolysis, causing cancers. Here, we show that mouse Lsd1/Kdm1a deletion causes dramatic dissolution of SWI/SNF complexes and that LSD1 demethylates the methylated lysine residues in SMARCC1 and SMARCC2 to preserve the structural integrity of SWI/SNF complexes. The methylated SMARCC1/SMARCC2 are targeted for proteolysis by L3MBTL3 and the CRL4DCAF5 ubiquitin ligase complex. We identify SMARCC1 as the critical target of LSD1 and L3MBTL3 to maintain the pluripotency and self-renewal of embryonic stem cells. L3MBTL3 also regulates SMARCC1/SMARCC2 proteolysis induced by the loss of SWI/SNF subunits. Consistently, mouse L3mbtl3 deletion causes striking accumulation of SWI/SNF components, associated with embryonic lethality. Our studies reveal that the assembly/disassembly of SWI/SNF complexes is dynamically controlled by a lysine-methylation dependent proteolytic mechanism to maintain the integrity of the SWI/SNF complexes.

Suggested Citation

  • Pengfei Guo & Nam Hoang & Joseph Sanchez & Elaine H. Zhang & Keshari Rajawasam & Kristiana Trinidad & Hong Sun & Hui Zhang, 2022. "The assembly of mammalian SWI/SNF chromatin remodeling complexes is regulated by lysine-methylation dependent proteolysis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34348-9
    DOI: 10.1038/s41467-022-34348-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34348-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34348-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Feng Leng & Jiekai Yu & Chunxiao Zhang & Salvador Alejo & Nam Hoang & Hong Sun & Fei Lu & Hui Zhang, 2018. "Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4DCAF5 ubiquitin ligase," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    2. Lena Ho & Gerald R. Crabtree, 2010. "Chromatin remodelling during development," Nature, Nature, vol. 463(7280), pages 474-484, January.
    3. Jianxun Wang & Kathleen Scully & Xiaoyan Zhu & Ling Cai & Jie Zhang & Gratien G. Prefontaine & Anna Krones & Kenneth A. Ohgi & Ping Zhu & Ivan Garcia-Bassets & Forrest Liu & Havilah Taylor & Jean Loza, 2007. "Opposing LSD1 complexes function in developmental gene activation and repression programmes," Nature, Nature, vol. 446(7138), pages 882-887, April.
    4. Michael A. Christopher & Dexter A. Myrick & Benjamin G. Barwick & Amanda K. Engstrom & Kirsten A. Porter-Stransky & Jeremy M. Boss & David Weinshenker & Allan I. Levey & David J. Katz, 2017. "LSD1 protects against hippocampal and cortical neurodegeneration," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beatriz del Blanco & Sergio Niñerola & Ana M. Martín-González & Juan Paraíso-Luna & Minji Kim & Rafael Muñoz-Viana & Carina Racovac & Jose V. Sanchez-Mut & Yijun Ruan & Ángel Barco, 2024. "Kdm1a safeguards the topological boundaries of PRC2-repressed genes and prevents aging-related euchromatinization in neurons," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Cheng Zeng & Jiwei Chen & Emmalee W. Cooke & Arijita Subuddhi & Eliana T. Roodman & Fei Xavier Chen & Kaixiang Cao, 2023. "Demethylase-independent roles of LSD1 in regulating enhancers and cell fate transition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Yawen Lei & Yaoguang Yu & Wei Fu & Tao Zhu & Caihong Wu & Zhihao Zhang & Zewang Yu & Xin Song & Jianqu Xu & Zhenwei Liang & Peitao Lü & Chenlong Li, 2024. "BCL7A and BCL7B potentiate SWI/SNF-complex-mediated chromatin accessibility to regulate gene expression and vegetative phase transition in plants," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Yi Liu & Brian Debo & Mingfeng Li & Zhennan Shi & Wanqiang Sheng & Yang Shi, 2021. "LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Grigorios Georgolopoulos & Nikoletta Psatha & Mineo Iwata & Andrew Nishida & Tannishtha Som & Minas Yiangou & John A. Stamatoyannopoulos & Jeff Vierstra, 2021. "Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Debashish U. Menon & Oleksandr Kirsanov & Christopher B. Geyer & Terry Magnuson, 2021. "Mammalian SWI/SNF chromatin remodeler is essential for reductional meiosis in males," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    7. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Cornelis J. Boogerd & Ilaria Perini & Eirini Kyriakopoulou & Su Ji Han & Phit La & Britt Swaan & Jari B. Berkhout & Danielle Versteeg & Jantine Monshouwer-Kloots & Eva Rooij, 2023. "Cardiomyocyte proliferation is suppressed by ARID1A-mediated YAP inhibition during cardiac maturation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34348-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.