IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33924-3.html
   My bibliography  Save this article

Supramolecular photodynamic agents for simultaneous oxidation of NADH and generation of superoxide radical

Author

Listed:
  • Kun-Xu Teng

    (Beijing Normal University)

  • Li-Ya Niu

    (Beijing Normal University)

  • Nan Xie

    (Capital Medical University)

  • Qing-Zheng Yang

    (Beijing Normal University)

Abstract

Given that Type-I photosensitizers (PSs) have hypoxia tolerance, developing general approaches to prepare Type-I PSs is of great importance, but remains a challenge. Here, we report a supramolecular strategy for the preparation of Type-I photodynamic agents, which simultaneously generate strong oxidizing cationic radicals and superoxide radicals, by introducing electron acceptors to the existing Type-II PSs. As a proof-of-concept, three electron acceptors were designed and co-assembled with a classical PS to produce quadruple hydrogen-bonded supramolecular photodynamic agents. The photo-induced electron transfer from the PS to the adjacent electron acceptor occurs efficiently, leading to the generation of a strong oxidizing PS+• and an anionic radical of the acceptor, which further transfers an electron to oxygen to form O2−•. In addition, these photodynamic agents induce direct photocatalytic oxidation of NADH with a turnover frequency as high as 53.7 min−1, which offers an oxygen-independent mechanism to damage tumors.

Suggested Citation

  • Kun-Xu Teng & Li-Ya Niu & Nan Xie & Qing-Zheng Yang, 2022. "Supramolecular photodynamic agents for simultaneous oxidation of NADH and generation of superoxide radical," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33924-3
    DOI: 10.1038/s41467-022-33924-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33924-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33924-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rozbeh Baradaran & John M. Berrisford & Gurdeep S. Minhas & Leonid A. Sazanov, 2013. "Crystal structure of the entire respiratory complex I," Nature, Nature, vol. 494(7438), pages 443-448, February.
    2. Jing An & Shanliang Tang & Gaobo Hong & Wenlong Chen & Miaomiao Chen & Jitao Song & Zhiliang Li & Xiaojun Peng & Fengling Song & Wen-Heng Zheng, 2022. "An unexpected strategy to alleviate hypoxia limitation of photodynamic therapy by biotinylation of photosensitizers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Zhengze Yu & Ping Zhou & Wei Pan & Na Li & Bo Tang, 2018. "A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yufu Tang & Yuanyuan Li & Bowen Li & Wentao Song & Guobin Qi & Jianwu Tian & Wei Huang & Quli Fan & Bin Liu, 2024. "Oxygen-independent organic photosensitizer with ultralow-power NIR photoexcitation for tumor-specific photodynamic therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Zhao Zhang & Zixiang Wei & Jintong Guo & Jinxiao Lyu & Bingzhe Wang & Gang Wang & Chunfei Wang & Liqiang Zhou & Zhen Yuan & Guichuan Xing & Changfeng Wu & Xuanjun Zhang, 2024. "Metallopolymer strategy to explore hypoxic active narrow-bandgap photosensitizers for effective cancer photodynamic therapy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongsung Lee & Chung Hyun Cho & Chanyoung Noh & Ji Hyun Yang & Seung In Park & Yu Min Lee & John A. West & Debashish Bhattacharya & Kyubong Jo & Hwan Su Yoon, 2023. "Origin of minicircular mitochondrial genomes in red algae," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Ralf Steinhilper & Gabriele Höff & Johann Heider & Bonnie J. Murphy, 2022. "Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yufu Tang & Yuanyuan Li & Bowen Li & Wentao Song & Guobin Qi & Jianwu Tian & Wei Huang & Quli Fan & Bin Liu, 2024. "Oxygen-independent organic photosensitizer with ultralow-power NIR photoexcitation for tumor-specific photodynamic therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Wenping Zhu & Ying Li & Shaoxun Guo & Wu-Jie Guo & Tuokai Peng & Hui Li & Bin Liu & Hui-Qing Peng & Ben Zhong Tang, 2022. "Stereoisomeric engineering of aggregation-induced emission photosensitizers towards fungal killing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Guihong Lu & Xiaojun Wang & Feng Li & Shuang Wang & Jiawei Zhao & Jinyi Wang & Jing Liu & Chengliang Lyu & Peng Ye & Hui Tan & Weiping Li & Guanghui Ma & Wei Wei, 2022. "Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Pankaj Sharma & Elena Maklashina & Markus Voehler & Sona Balintova & Sarka Dvorakova & Michal Kraus & Katerina Hadrava Vanova & Zuzana Nahacka & Renata Zobalova & Stepana Boukalova & Kristyna Cunatova, 2024. "Disordered-to-ordered transitions in assembly factors allow the complex II catalytic subunit to switch binding partners," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Zhao Zhang & Zixiang Wei & Jintong Guo & Jinxiao Lyu & Bingzhe Wang & Gang Wang & Chunfei Wang & Liqiang Zhou & Zhen Yuan & Guichuan Xing & Changfeng Wu & Xuanjun Zhang, 2024. "Metallopolymer strategy to explore hypoxic active narrow-bandgap photosensitizers for effective cancer photodynamic therapy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Yang Yang & Jinshu Huang & Wei Wei & Qin Zeng & Xipeng Li & Da Xing & Bo Zhou & Tao Zhang, 2022. "Switching the NIR upconversion of nanoparticles for the orthogonal activation of photoacoustic imaging and phototherapy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33924-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.