IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33768-x.html
   My bibliography  Save this article

TGF-β-dependent lymphoid tissue residency of stem-like T cells limits response to tumor vaccine

Author

Listed:
  • Guo Li

    (Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio
    Xiangya Hospital, Central South University
    Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University
    Central South University)

  • Saranya Srinivasan

    (Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio)

  • Liwen Wang

    (Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio
    Central South University)

  • Chaoyu Ma

    (Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio)

  • Kai Guo

    (Xiangya Hospital, Central South University
    Sun Yat-Sen University Cancer Center)

  • Wenhao Xiao

    (Xiangya Hospital, Central South University)

  • Wei Liao

    (Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio
    Central South University
    Hunan Children’s Hospital)

  • Shruti Mishra

    (Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio
    Dana-Farber Cancer Institute, Harvard Medical School)

  • Xin Zhang

    (Xiangya Hospital, Central South University
    Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University
    Central South University
    Central South University)

  • Yuanzheng Qiu

    (Xiangya Hospital, Central South University
    Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University
    Central South University
    Central South University)

  • Qianjin Lu

    (Central South University
    Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Yong Liu

    (Xiangya Hospital, Central South University
    Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University
    Central South University
    Central South University)

  • Nu Zhang

    (Immunology and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio)

Abstract

TGF-β signaling is necessary for CD8+ T cell differentiation into tissue resident memory T cells (TRM). Although higher frequency of CD8+ TRM cells in the tumor microenvironment is associated with better prognosis, TGF-β−blockade typically improves rather than worsens outcomes. Here we show that in a mouse melanoma model, in the tumor-draining lymph nodes (TDLN) rather than in the tumors themselves, stem-like CD8+ T cells differentiate into TRMs in a TGF-β and tumor antigen dependent manner. Following vaccination against a melanoma-specific epitope, most tumour-specific CD8+ T cells are maintained in a stem-like state, but a proportion of cells lost TRM status and differentiate into CX3CR1+ effector CD8+ T cells in the TDLN, which are subsequently migrating into the tumours. Disruption of TGF-β signaling changes the dynamics of these developmental processes, with the net result of improving effector CD8+ T cell migration into the tumours. In summary, TDLN stem-like T cells transiently switch from a TGF-β-dependent TRM differentiation program to an anti-tumor migratory effector development upon vaccination, which transition can be facilitated by targeted TGF-β blockade.

Suggested Citation

  • Guo Li & Saranya Srinivasan & Liwen Wang & Chaoyu Ma & Kai Guo & Wenhao Xiao & Wei Liao & Shruti Mishra & Xin Zhang & Yuanzheng Qiu & Qianjin Lu & Yong Liu & Nu Zhang, 2022. "TGF-β-dependent lymphoid tissue residency of stem-like T cells limits response to tumor vaccine," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33768-x
    DOI: 10.1038/s41467-022-33768-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33768-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33768-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sanjeev Mariathasan & Shannon J. Turley & Dorothee Nickles & Alessandra Castiglioni & Kobe Yuen & Yulei Wang & Edward E. Kadel III & Hartmut Koeppen & Jillian L. Astarita & Rafael Cubas & Suchit Jhunj, 2018. "TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells," Nature, Nature, vol. 554(7693), pages 544-548, February.
    2. Mevyn Nizard & Hélène Roussel & Mariana O. Diniz & Soumaya Karaki & Thi Tran & Thibault Voron & Estelle Dransart & Federico Sandoval & Marc Riquet & Bastien Rance & Elie Marcheteau & Elizabeth Fabre &, 2017. "Induction of resident memory T cells enhances the efficacy of cancer vaccine," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    3. J. Justin Milner & Clara Toma & Bingfei Yu & Kai Zhang & Kyla Omilusik & Anthony T. Phan & Dapeng Wang & Adam J. Getzler & Toan Nguyen & Shane Crotty & Wei Wang & Matthew E. Pipkin & Ananda W. Goldrat, 2017. "Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours," Nature, Nature, vol. 552(7684), pages 253-257, December.
    4. Simone L. Park & Anthony Buzzai & Jai Rautela & Jyh Liang Hor & Katharina Hochheiser & Maike Effern & Nathan McBain & Teagan Wagner & Jarem Edwards & Robyn McConville & James S. Wilmott & Richard A. S, 2019. "Author Correction: Tissue-resident memory CD8+ T cells promote melanoma–immune equilibrium in skin," Nature, Nature, vol. 566(7745), pages 10-10, February.
    5. Simone L. Park & Anthony Buzzai & Jai Rautela & Jyh Liang Hor & Katharina Hochheiser & Maike Effern & Nathan McBain & Teagan Wagner & Jarem Edwards & Robyn McConville & James S. Wilmott & Richard A. S, 2019. "Tissue-resident memory CD8+ T cells promote melanoma–immune equilibrium in skin," Nature, Nature, vol. 565(7739), pages 366-371, January.
    6. Ran He & Shiyue Hou & Cheng Liu & Anli Zhang & Qiang Bai & Miao Han & Yu Yang & Gang Wei & Ting Shen & Xinxin Yang & Lifan Xu & Xiangyu Chen & Yaxing Hao & Pengcheng Wang & Chuhong Zhu & Juanjuan Ou &, 2016. "Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection," Nature, Nature, vol. 537(7620), pages 412-416, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingnan Zhao & Jiemiao Hu & Lingyuan Kong & Shan Jiang & Xiangjun Tian & Jing Wang & Rintaro Hashizume & Zhiliang Jia & Natalie Wall Fowlkes & Jun Yan & Xueqing Xia & Sofia F. Yi & Long Hoang Dao & Da, 2023. "FGL2-targeting T cells exhibit antitumor effects on glioblastoma and recruit tumor-specific brain-resident memory T cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Curtis J. Pritzl & Dezzarae Luera & Karin M. Knudson & Michael J. Quaney & Michael J. Calcutt & Mark A. Daniels & Emma Teixeiro, 2023. "IKK2/NFkB signaling controls lung resident CD8+ T cell memory during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Nekisa Zakeri & Andrew Hall & Leo Swadling & Laura J. Pallett & Nathalie M. Schmidt & Mariana O. Diniz & Stephanie Kucykowicz & Oliver E. Amin & Amir Gander & Massimo Pinzani & Brian R. Davidson & Alb, 2022. "Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Jing Liu & Xia Bu & Chen Chu & Xiaoming Dai & John M. Asara & Piotr Sicinski & Gordon J. Freeman & Wenyi Wei, 2023. "PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Han Luo & Xuyang Xia & Li-Bin Huang & Hyunsu An & Minyuan Cao & Gyeong Dae Kim & Hai-Ning Chen & Wei-Han Zhang & Yang Shu & Xiangyu Kong & Zhixiang Ren & Pei-Heng Li & Yang Liu & Huairong Tang & Rongh, 2022. "Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Hao Wu & Xiufeng Zhao & Sophia M. Hochrein & Miriam Eckstein & Gabriela F. Gubert & Konrad Knöpper & Ana Maria Mansilla & Arman Öner & Remi Doucet-Ladevèze & Werner Schmitz & Bart Ghesquière & Sebasti, 2023. "Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Yi Liu & Brian Debo & Mingfeng Li & Zhennan Shi & Wanqiang Sheng & Yang Shi, 2021. "LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    9. Bogang Wu & Xiaowen Zhang & Huai-Chin Chiang & Haihui Pan & Bin Yuan & Payal Mitra & Leilei Qi & Hayk Simonyan & Colin N. Young & Eric Yvon & Yanfen Hu & Nu Zhang & Rong Li, 2022. "RNA polymerase II pausing factor NELF in CD8+ T cells promotes antitumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Darren Wan-Teck Lim & Hsiang-Fong Kao & Lisda Suteja & Constance H. Li & Hong Sheng Quah & Daniel Shao-Weng Tan & Sze-Huey Tan & Eng-Huat Tan & Wan-Ling Tan & Justina Nadia Lee & Felicia Yu-Ting Wee &, 2023. "Clinical efficacy and biomarker analysis of dual PD-1/CTLA-4 blockade in recurrent/metastatic EBV-associated nasopharyngeal carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Chun Wai Wong & Christos Evangelou & Kieran N. Sefton & Rotem Leshem & Wei Zhang & Vishaka Gopalan & Sorayut Chattrakarn & Macarena Lucia Fernandez Carro & Erez Uzuner & Holly Mole & Daniel J. Wilcock, 2023. "PARP14 inhibition restores PD-1 immune checkpoint inhibitor response following IFNγ-driven acquired resistance in preclinical cancer models," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    12. Carl-Philipp Hackstein & Dana Costigan & Linnea Drexhage & Claire Pearson & Samuel Bullers & Nicholas Ilott & Hossain Delowar Akther & Yisu Gu & Michael E. B. FitzPatrick & Oliver J. Harrison & Lucy C, 2022. "A conserved population of MHC II-restricted, innate-like, commensal-reactive T cells in the gut of humans and mice," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Darci Phillips & Magdalena Matusiak & Belén Rivero Gutierrez & Salil S. Bhate & Graham L. Barlow & Sizun Jiang & Janos Demeter & Kimberly S. Smythe & Robert H. Pierce & Steven P. Fling & Nirasha Ramch, 2021. "Immune cell topography predicts response to PD-1 blockade in cutaneous T cell lymphoma," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    14. JungHo Kong & Doyeon Ha & Juhun Lee & Inhae Kim & Minhyuk Park & Sin-Hyeog Im & Kunyoo Shin & Sanguk Kim, 2022. "Network-based machine learning approach to predict immunotherapy response in cancer patients," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Yin Li & Manling Jiang & Ling Aye & Li Luo & Yong Zhang & Fengkai Xu & Yongqi Wei & Dan Peng & Xiang He & Jie Gu & Xiaofang Yu & Guoping Li & Di Ge & Chunlai Lu, 2024. "UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    16. Yuan Liao & Lifeng Ma & Qile Guo & Weigao E & Xing Fang & Lei Yang & Fanwei Ruan & Jingjing Wang & Peijing Zhang & Zhongyi Sun & Haide Chen & Zhongliang Lin & Xueyi Wang & Xinru Wang & Huiyu Sun & Xiu, 2022. "Cell landscape of larval and adult Xenopus laevis at single-cell resolution," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Hugo Croizer & Rana Mhaidly & Yann Kieffer & Geraldine Gentric & Lounes Djerroudi & Renaud Leclere & Floriane Pelon & Catherine Robley & Mylene Bohec & Arnaud Meng & Didier Meseure & Emanuela Romano &, 2024. "Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-28, December.
    18. Richard I. Ainsworth & Deepa Hammaker & Gyrid Nygaard & Cecilia Ansalone & Camilla Machado & Kai Zhang & Lina Zheng & Lucy Carrillo & Andre Wildberg & Amanda Kuhs & Mattias N. D. Svensson & David L. B, 2022. "Systems-biology analysis of rheumatoid arthritis fibroblast-like synoviocytes implicates cell line-specific transcription factor function," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Marina T. Broz & Emily Y. Ko & Kristin Ishaya & Jinfen Xiao & Marco Simone & Xen Ping Hoi & Roberta Piras & Basia Gala & Fernando H. G. Tessaro & Anja Karlstaedt & Sandra Orsulic & Amanda W. Lund & Ke, 2024. "Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Rachael M. Zemek & Wee Loong Chin & Vanessa S. Fear & Ben Wylie & Thomas H. Casey & Cath Forbes & Caitlin M. Tilsed & Louis Boon & Belinda B. Guo & Anthony Bosco & Alistair R. R. Forrest & Michael J. , 2022. "Temporally restricted activation of IFNβ signaling underlies response to immune checkpoint therapy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33768-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.