IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33682-2.html
   My bibliography  Save this article

Selective control of conductance modes in multi-terminal Josephson junctions

Author

Listed:
  • Gino V. Graziano

    (University of Minnesota)

  • Mohit Gupta

    (University of Minnesota)

  • Mihir Pendharkar

    (Electrical and Computer Engineering, University of California Santa Barbara
    Materials Science and Engineering, Stanford University)

  • Jason T. Dong

    (University of California Santa Barbara)

  • Connor P. Dempsey

    (Electrical and Computer Engineering, University of California Santa Barbara)

  • Chris Palmstrøm

    (Electrical and Computer Engineering, University of California Santa Barbara
    University of California Santa Barbara
    California NanoSystems Institute, University of California Santa Barbara)

  • Vlad S. Pribiag

    (University of Minnesota)

Abstract

The Andreev bound state spectra of multi-terminal Josephson junctions form an artificial band structure, which is predicted to host tunable topological phases under certain conditions. However, the number of conductance modes between the terminals of a multi-terminal Josephson junction must be few in order for this spectrum to be experimentally accessible. In this work, we employ a quantum point contact geometry in three-terminal Josephson devices to demonstrate independent control of conductance modes between each pair of terminals and access to the single-mode regime coexistent with the presence of superconducting coupling. These results establish a full platform on which to realize tunable Andreev bound state spectra in multi-terminal Josephson junctions.

Suggested Citation

  • Gino V. Graziano & Mohit Gupta & Mihir Pendharkar & Jason T. Dong & Connor P. Dempsey & Chris Palmstrøm & Vlad S. Pribiag, 2022. "Selective control of conductance modes in multi-terminal Josephson junctions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33682-2
    DOI: 10.1038/s41467-022-33682-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33682-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33682-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antonio Fornieri & Alexander M. Whiticar & F. Setiawan & Elías Portolés & Asbjørn C. C. Drachmann & Anna Keselman & Sergei Gronin & Candice Thomas & Tian Wang & Ray Kallaher & Geoffrey C. Gardner & Er, 2019. "Evidence of topological superconductivity in planar Josephson junctions," Nature, Nature, vol. 569(7754), pages 89-92, May.
    2. Roman-Pascal Riwar & Manuel Houzet & Julia S. Meyer & Yuli V. Nazarov, 2016. "Multi-terminal Josephson junctions as topological matter," Nature Communications, Nature, vol. 7(1), pages 1-5, September.
    3. Ko-Fan Huang & Yuval Ronen & Régis Mélin & Denis Feinberg & Kenji Watanabe & Takashi Taniguchi & Philip Kim, 2022. "Evidence for 4e charge of Cooper quartets in a biased multi-terminal graphene-based Josephson junction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Dominique Laroche & Daniël Bouman & David J. Woerkom & Alex Proutski & Chaitanya Murthy & Dmitry I. Pikulin & Chetan Nayak & Ruben J. J. Gulik & Jesper Nygård & Peter Krogstrup & Leo P. Kouwenhoven & , 2019. "Observation of the 4π-periodic Josephson effect in indium arsenide nanowires," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Hechen Ren & Falko Pientka & Sean Hart & Andrew T. Pierce & Michael Kosowsky & Lukas Lunczer & Raimund Schlereth & Benedikt Scharf & Ewelina M. Hankiewicz & Laurens W. Molenkamp & Bertrand I. Halperin, 2019. "Topological superconductivity in a phase-controlled Josephson junction," Nature, Nature, vol. 569(7754), pages 93-98, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohit Gupta & Gino V. Graziano & Mihir Pendharkar & Jason T. Dong & Connor P. Dempsey & Chris Palmstrøm & Vlad S. Pribiag, 2023. "Gate-tunable superconducting diode effect in a three-terminal Josephson device," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Zhou & Matthieu C. Dartiailh & Kasra Sardashti & Jong E. Han & Alex Matos-Abiague & Javad Shabani & Igor Žutić, 2022. "Fusion of Majorana bound states with mini-gate control in two-dimensional systems," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Sadashige Matsuo & Takaya Imoto & Tomohiro Yokoyama & Yosuke Sato & Tyler Lindemann & Sergei Gronin & Geoffrey C. Gardner & Sho Nakosai & Yukio Tanaka & Michael J. Manfra & Seigo Tarucha, 2023. "Phase-dependent Andreev molecules and superconducting gap closing in coherently-coupled Josephson junctions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Marco Coraiola & Daniel Z. Haxell & Deividas Sabonis & Hannes Weisbrich & Aleksandr E. Svetogorov & Manuel Hinderling & Sofieke C. Kate & Erik Cheah & Filip Krizek & Rüdiger Schott & Werner Wegscheide, 2023. "Phase-engineering the Andreev band structure of a three-terminal Josephson junction," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Daniel Z. Haxell & Marco Coraiola & Deividas Sabonis & Manuel Hinderling & Sofieke C. Kate & Erik Cheah & Filip Krizek & Rüdiger Schott & Werner Wegscheider & Wolfgang Belzig & Juan Carlos Cuevas & Fa, 2023. "Microwave-induced conductance replicas in hybrid Josephson junctions without Floquet—Andreev states," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Prasanna Rout & Nikos Papadopoulos & Fernando Peñaranda & Kenji Watanabe & Takashi Taniguchi & Elsa Prada & Pablo San-Jose & Srijit Goswami, 2024. "Supercurrent mediated by helical edge modes in bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Ko-Fan Huang & Yuval Ronen & Régis Mélin & Denis Feinberg & Kenji Watanabe & Takashi Taniguchi & Philip Kim, 2022. "Evidence for 4e charge of Cooper quartets in a biased multi-terminal graphene-based Josephson junction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Mohit Gupta & Gino V. Graziano & Mihir Pendharkar & Jason T. Dong & Connor P. Dempsey & Chris Palmstrøm & Vlad S. Pribiag, 2023. "Gate-tunable superconducting diode effect in a three-terminal Josephson device," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33682-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.