IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33255-3.html
   My bibliography  Save this article

Biosynthesis of plant hemostatic dencichine in Escherichia coli

Author

Listed:
  • Wenna Li

    (Beijing University of Chemical Technology)

  • Zhao Zhou

    (Beijing University of Chemical Technology)

  • Xianglai Li

    (Beijing University of Chemical Technology)

  • Lin Ma

    (Beijing University of Chemical Technology)

  • Qingyuan Guan

    (Beijing University of Chemical Technology)

  • Guojun Zheng

    (Beijing University of Chemical Technology)

  • Hao Liang

    (Beijing University of Chemical Technology)

  • Yajun Yan

    (The University of Georgia)

  • Xiaolin Shen

    (Beijing University of Chemical Technology)

  • Jia Wang

    (Beijing University of Chemical Technology)

  • Xinxiao Sun

    (Beijing University of Chemical Technology)

  • Qipeng Yuan

    (Beijing University of Chemical Technology)

Abstract

Dencichine is a plant-derived nature product that has found various pharmacological applications. Currently, its natural biosynthetic pathway is still elusive, posing challenge to its heterologous biosynthesis. In this work, we design artificial pathways through retro-biosynthesis approaches and achieve de novo production of dencichine. First, biosynthesis of the two direct precursors L−2, 3-diaminopropionate and oxalyl-CoA is achieved by screening and integrating microbial enzymes. Second, the solubility of dencichine synthase, which is the last and only plant-derived pathway enzyme, is significantly improved by introducing 28 synonymous rare codons into the codon-optimized gene to slow down its translation rate. Last, the metabolic network is systematically engineered to direct the carbon flux to dencichine production, and the final titer reaches 1.29 g L−1 with a yield of 0.28 g g−1 glycerol. This work lays the foundation for sustainable production of dencichine and represents an example of how synthetic biology can be harnessed to generate unnatural pathways to produce a desired molecule.

Suggested Citation

  • Wenna Li & Zhao Zhou & Xianglai Li & Lin Ma & Qingyuan Guan & Guojun Zheng & Hao Liang & Yajun Yan & Xiaolin Shen & Jia Wang & Xinxiao Sun & Qipeng Yuan, 2022. "Biosynthesis of plant hemostatic dencichine in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33255-3
    DOI: 10.1038/s41467-022-33255-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33255-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33255-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jasmin Hafner & James Payne & Homa MohammadiPeyhani & Vassily Hatzimanikatis & Christina Smolke, 2021. "A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Prashanth Srinivasan & Christina D. Smolke, 2020. "Biosynthesis of medicinal tropane alkaloids in yeast," Nature, Nature, vol. 585(7826), pages 614-619, September.
    3. Homa MohammadiPeyhani & Jasmin Hafner & Anastasia Sveshnikova & Victor Viterbo & Vassily Hatzimanikatis, 2022. "Expanding biochemical knowledge and illuminating metabolic dark matter with ATLASx," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Xiaonan Liu & Jian Cheng & Guanghui Zhang & Wentao Ding & Lijin Duan & Jing Yang & Ling Kui & Xiaozhi Cheng & Jiangxing Ruan & Wei Fan & Junwen Chen & Guangqiang Long & Yan Zhao & Jing Cai & Wen Wang , 2018. "Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. Rao Fu & Pingyu Zhang & Ge Jin & Lianglei Wang & Shiqian Qi & Yang Cao & Cathie Martin & Yang Zhang, 2021. "Versatility in acyltransferase activity completes chicoric acid biosynthesis in purple coneflower," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Xiaozhou Luo & Michael A. Reiter & Leo d’Espaux & Jeff Wong & Charles M. Denby & Anna Lechner & Yunfeng Zhang & Adrian T. Grzybowski & Simon Harth & Weiyin Lin & Hyunsu Lee & Changhua Yu & John Shin &, 2019. "Complete biosynthesis of cannabinoids and their unnatural analogues in yeast," Nature, Nature, vol. 567(7746), pages 123-126, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sierra M. Brooks & Celeste Marsan & Kevin B. Reed & Shuo-Fu Yuan & Dustin-Dat Nguyen & Adit Trivedi & Gokce Altin-Yavuzarslan & Nathan Ballinger & Alshakim Nelson & Hal S. Alper, 2023. "A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sierra M. Brooks & Celeste Marsan & Kevin B. Reed & Shuo-Fu Yuan & Dustin-Dat Nguyen & Adit Trivedi & Gokce Altin-Yavuzarslan & Nathan Ballinger & Alshakim Nelson & Hal S. Alper, 2023. "A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jack Chun-Ting Liu & Ricardo De La Peña & Christian Tocol & Elizabeth S. Sattely, 2024. "Reconstitution of early paclitaxel biosynthetic network," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Ruiqi Yan & Binghan Xie & Kebo Xie & Qi Liu & Songyang Sui & Shuqi Wang & Dawei Chen & Jimei Liu & Ridao Chen & Jungui Dai & Lin Yang, 2024. "Unravelling and reconstructing the biosynthetic pathway of bergenin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Junlan Zeng & Xiaoqiang Liu & Zhaoyue Dong & Fangyuan Zhang & Fei Qiu & Mingyu Zhong & Tengfei Zhao & Chunxian Yang & Lingjiang Zeng & Xiaozhong Lan & Hongbo Zhang & Junhui Zhou & Min Chen & Kexuan Ta, 2024. "Discovering a mitochondrion-localized BAHD acyltransferase involved in calystegine biosynthesis and engineering the production of 3β-tigloyloxytropane," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Christopher J. Vavricka & Shunsuke Takahashi & Naoki Watanabe & Musashi Takenaka & Mami Matsuda & Takanobu Yoshida & Ryo Suzuki & Hiromasa Kiyota & Jianyong Li & Hiromichi Minami & Jun Ishii & Kenji T, 2022. "Machine learning discovery of missing links that mediate alternative branches to plant alkaloids," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Gita Naseri, 2023. "A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. William M. Shaw & Yunfeng Zhang & Xinyu Lu & Ahmad S. Khalil & Graham Ladds & Xiaozhou Luo & Tom Ellis, 2022. "Screening microbially produced Δ9-tetrahydrocannabinol using a yeast biosensor workflow," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Radin Sadre & Thilani M. Anthony & Josh M. Grabar & Matthew A. Bedewitz & A. Daniel Jones & Cornelius S. Barry, 2022. "Metabolomics-guided discovery of cytochrome P450s involved in pseudotropine-dependent biosynthesis of modified tropane alkaloids," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Jiao Yang & Ying Wu & Pan Zhang & Jianxiang Ma & Ying Jun Yao & Yan Lin Ma & Lei Zhang & Yongzhi Yang & Changmin Zhao & Jihua Wu & Xiangwen Fang & Jianquan Liu, 2023. "Multiple independent losses of the biosynthetic pathway for two tropane alkaloids in the Solanaceae family," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Hao-Tian Wang & Zi-Long Wang & Kuan Chen & Ming-Ju Yao & Meng Zhang & Rong-Shen Wang & Jia-He Zhang & Hans Ågren & Fu-Dong Li & Junhao Li & Xue Qiao & Min Ye, 2023. "Insights into the missing apiosylation step in flavonoid apiosides biosynthesis of Leguminosae plants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Hongjiao Zhang & Zixin Li & Shuang Zhou & Shu-Ming Li & Huomiao Ran & Zili Song & Tao Yu & Wen-Bing Yin, 2022. "A fungal NRPS-PKS enzyme catalyses the formation of the flavonoid naringenin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Qun Yue & Jie Meng & Yue Qiu & Miaomiao Yin & Liwen Zhang & Weiping Zhou & Zhiqiang An & Zihe Liu & Qipeng Yuan & Wentao Sun & Chun Li & Huimin Zhao & István Molnár & Yuquan Xu & Shuobo Shi, 2023. "A polycistronic system for multiplexed and precalibrated expression of multigene pathways in fungi," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Shan Yang & Ruibing Chen & Xuan Cao & Guodong Wang & Yongjin J. Zhou, 2024. "De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. So-Hee Son & Jae-Eung Kim & Gyuri Park & Young-Joon Ko & Bong Hyun Sung & Jongcheol Seo & Seung Soo Oh & Ju Young Lee, 2022. "Metabolite trafficking enables membrane-impermeable-terpene secretion by yeast," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Tian Tian & Yong-Jiang Wang & Jian-Ping Huang & Jie Li & Bingyan Xu & Yin Chen & Li Wang & Jing Yang & Yijun Yan & Sheng-Xiong Huang, 2022. "Catalytic innovation underlies independent recruitment of polyketide synthases in cocaine and hyoscyamine biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Itai Levin & Mengjie Liu & Christopher A. Voigt & Connor W. Coley, 2022. "Merging enzymatic and synthetic chemistry with computational synthesis planning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Fangyuan Zhang & Fei Qiu & Junlan Zeng & Zhichao Xu & Yueli Tang & Tengfei Zhao & Yuqin Gou & Fei Su & Shiyi Wang & Xiuli Sun & Zheyong Xue & Weixing Wang & Chunxian Yang & Lingjiang Zeng & Xiaozhong , 2023. "Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Lin Wang & Xi Zhang & Chenwang Tang & Pengcheng Li & Runtao Zhu & Jing Sun & Yunfeng Zhang & Hua Cui & Jiajia Ma & Xinyu Song & Weiwen Zhang & Xiang Gao & Xiaozhou Luo & Lingchong You & Ye Chen & Zhuo, 2022. "Engineering consortia by polymeric microbial swarmbots," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Dixit, Yatika & Yadav, Preeti & Sharma, Arun Kumar & Pandey, Poornima & Kuila, Arindam, 2023. "Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33255-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.