IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33177-0.html
   My bibliography  Save this article

Synergistic interplay between photoisomerization and photoluminescence in a light-driven rotary molecular motor

Author

Listed:
  • Ryojun Toyoda

    (University of Groningen
    Tohoku University)

  • Nong V. Hoang

    (University of Groningen)

  • Kiana Gholamjani Moghaddam

    (University of Groningen)

  • Stefano Crespi

    (University of Groningen
    Uppsala University)

  • Daisy R. S. Pooler

    (University of Groningen)

  • Shirin Faraji

    (University of Groningen)

  • Maxim S. Pshenichnikov

    (University of Groningen)

  • Ben L. Feringa

    (University of Groningen
    University of Groningen)

Abstract

Photoactuators and photoluminescent dyes utilize light to perform mechanical motion and undergo spontaneous radiation emission, respectively. Combining these two functionalities in a single molecule would benefit the construction of advanced molecular machines. Due to the possible detrimental interaction between the two light-dependent functional parts, the design of hybrid systems featuring both functions in parallel remains highly challenging. Here, we develop a light-driven rotary molecular motor with an efficient photoluminescent dye chemically attached to the motor, not compromising its motor function. This molecular system shows efficient rotary motion and bright photoluminescence, and these functions can be addressed by a proper choice of excitation wavelengths and solvents. The moderate interaction between the two parts generates synergistic effects, which are beneficial for lower-energy excitation and chirality transfer from the motor to the photoluminescent dye. Our results provide prospects towards photoactive multifunctional systems capable of carrying out molecular rotary motion and tracking its location in a complex environment.

Suggested Citation

  • Ryojun Toyoda & Nong V. Hoang & Kiana Gholamjani Moghaddam & Stefano Crespi & Daisy R. S. Pooler & Shirin Faraji & Maxim S. Pshenichnikov & Ben L. Feringa, 2022. "Synergistic interplay between photoisomerization and photoluminescence in a light-driven rotary molecular motor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33177-0
    DOI: 10.1038/s41467-022-33177-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33177-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33177-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroyuki Noji & Ryohei Yasuda & Masasuke Yoshida & Kazuhiko Kinosita, 1997. "Direct observation of the rotation of F1-ATPase," Nature, Nature, vol. 386(6622), pages 299-302, March.
    2. Nagatoshi Koumura & Robert W. J. Zijlstra & Richard A. van Delden & Nobuyuki Harada & Ben L. Feringa, 1999. "Light-driven monodirectional molecular rotor," Nature, Nature, vol. 401(6749), pages 152-155, September.
    3. Hannes A. Houck & Filip E. Du Prez & Christopher Barner-Kowollik, 2017. "Controlling thermal reactivity with different colors of light," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grace C. Thaggard & Kyoung Chul Park & Jaewoong Lim & Buddhima K. P. Maldeni Kankanamalage & Johanna Haimerl & Gina R. Wilson & Margaret K. McBride & Kelly L. Forrester & Esther R. Adelson & Virginia , 2023. "Breaking the photoswitch speed limit," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomoki Nakajima & Shohei Tashiro & Masahiro Ehara & Mitsuhiko Shionoya, 2023. "Selective synthesis of tightly- and loosely-twisted metallomacrocycle isomers towards precise control of helicity inversion motion," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. J. Kishikawa & A. Nakanishi & A. Nakano & S. Saeki & A. Furuta & T. Kato & K. Mistuoka & K. Yokoyama, 2022. "Structural snapshots of V/A-ATPase reveal the rotary catalytic mechanism of rotary ATPases," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Eva Bertosin & Christopher M. Maffeo & Thomas Drexler & Maximilian N. Honemann & Aleksei Aksimentiev & Hendrik Dietz, 2021. "A nanoscale reciprocating rotary mechanism with coordinated mobility control," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Mengqi Du & Hannes A. Houck & Qiang Yin & Yewei Xu & Ying Huang & Yang Lan & Li Yang & Filip E. Du Prez & Guanjun Chang, 2022. "Force–reversible chemical reaction at ambient temperature for designing toughened dynamic covalent polymer networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Atsuki Nakano & Jun-ichi Kishikawa & Kaoru Mitsuoka & Ken Yokoyama, 2023. "Mechanism of ATP hydrolysis dependent rotation of bacterial ATP synthase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Palas Roy & Wesley R. Browne & Ben L. Feringa & Stephen R. Meech, 2023. "Ultrafast motion in a third generation photomolecular motor," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Ryohei Kobayashi & Hiroshi Ueno & Kei-ichi Okazaki & Hiroyuki Noji, 2023. "Molecular mechanism on forcible ejection of ATPase inhibitory factor 1 from mitochondrial ATP synthase," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Jie Wang & Jun Gu & Jia-Yu Zou & Meng-Jie Zhang & Rui Shen & Zhiwen Ye & Ping-Xun Xu & Ying He, 2024. "Photocatalytic Z/E isomerization unlocking the stereodivergent construction of axially chiral alkene frameworks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Umberto Raucci & Hayley Weir & Christoph Bannwarth & David M. Sanchez & Todd J. Martínez, 2022. "Chiral photochemistry of achiral molecules," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Alex Albaugh & Todd R. Gingrich, 2022. "Simulating a chemically fueled molecular motor with nonequilibrium molecular dynamics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Zhang, Yunxin, 2009. "A general two-cycle network model of molecular motors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3465-3474.
    12. L. Pfeifer & S. Crespi & P. Meulen & J. Kemmink & R. M. Scheek & M. F. Hilbers & W. J. Buma & B. L. Feringa, 2022. "Controlling forward and backward rotary molecular motion on demand," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Michael Filatov(Gulak) & Marco Paolino & Robin Pierron & Andrea Cappelli & Gianluca Giorgi & Jérémie Léonard & Miquel Huix-Rotllant & Nicolas Ferré & Xuchun Yang & Danil Kaliakin & Alejandro Blanco-Go, 2022. "Towards the engineering of a photon-only two-stroke rotary molecular motor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33177-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.