IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33139-6.html
   My bibliography  Save this article

Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours

Author

Listed:
  • Huiling Yu

    (Huazhong University of Science and Technology)

  • Liping Chen

    (Huazhong University of Science and Technology)

  • Huiyang Lei

    (Huazhong University of Science and Technology)

  • Guilin Pi

    (Huazhong University of Science and Technology)

  • Rui Xiong

    (Huazhong University of Science and Technology)

  • Tao Jiang

    (Huazhong University of Science and Technology)

  • Dongqin Wu

    (Huazhong University of Science and Technology)

  • Fei Sun

    (Huazhong University of Science and Technology)

  • Yang Gao

    (Huazhong University of Science and Technology)

  • Yuanhao Li

    (Huazhong University of Science and Technology)

  • Wenju Peng

    (Huazhong University of Science and Technology)

  • Bingyu Huang

    (Huazhong University of Science and Technology)

  • Guoda Song

    (Huazhong University of Science and Technology)

  • Xin Wang

    (Huazhong University of Science and Technology)

  • Jingru Lv

    (Huazhong University of Science and Technology)

  • Zetao Jin

    (Huazhong University of Science and Technology)

  • Dan Ke

    (Huazhong University of Science and Technology)

  • Ying Yang

    (Huazhong University of Science and Technology)

  • Jian-Zhi Wang

    (Huazhong University of Science and Technology
    Nantong University)

Abstract

Generalization is a fundamental cognitive ability of organisms to deal with the uncertainty in real-world situations. Excessive fear generalization and impaired reward generalization are closely related to many psychiatric disorders. However, the neural circuit mechanism for reward generalization and its role in anxiety-like behaviours remain elusive. Here, we found a robust activation of calbindin 1-neurons (Calb 1) in the posterior basolateral amygdala (pBLA), simultaneous with reward generalization to an ambiguous cue after reward conditioning in mice. We identify the infralimbic medial prefrontal cortex (IL) to the pBLACalb1 (Calb 1 neurons in the pBLA) pathway as being involved in reward generalization for the ambiguity. Activating IL–pBLA inputs strengthens reward generalization and reduces chronic unpredictable mild stress-induced anxiety- and depression-like behaviours in a manner dependent on pBLACalb1 neuron activation. These findings suggest that the IL–pBLACalb1 circuit could be a target to promote stress resilience via reward generalization and consequently ameliorate anxiety- and depression-like behaviours.

Suggested Citation

  • Huiling Yu & Liping Chen & Huiyang Lei & Guilin Pi & Rui Xiong & Tao Jiang & Dongqin Wu & Fei Sun & Yang Gao & Yuanhao Li & Wenju Peng & Bingyu Huang & Guoda Song & Xin Wang & Jingru Lv & Zetao Jin & , 2022. "Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33139-6
    DOI: 10.1038/s41467-022-33139-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33139-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33139-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Praneeth Namburi & Anna Beyeler & Suzuko Yorozu & Gwendolyn G. Calhoon & Sarah A. Halbert & Romy Wichmann & Stephanie S. Holden & Kim L. Mertens & Melodi Anahtar & Ada C. Felix-Ortiz & Ian R. Wickersh, 2015. "A circuit mechanism for differentiating positive and negative associations," Nature, Nature, vol. 520(7549), pages 675-678, April.
    2. Anna Grosso & Giulia Santoni & Eugenio Manassero & Annamaria Renna & Benedetto Sacchetti, 2018. "A neuronal basis for fear discrimination in the lateral amygdala," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Cyril Herry & Stephane Ciocchi & Verena Senn & Lynda Demmou & Christian Müller & Andreas Lüthi, 2008. "Switching on and off fear by distinct neuronal circuits," Nature, Nature, vol. 454(7204), pages 600-606, July.
    4. Jinho Jhang & Hyoeun Lee & Min Soo Kang & Han-Sol Lee & Hyungju Park & Jin-Hee Han, 2018. "Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    5. Minagi Ozawa & Patrick Davis & Jianguang Ni & Jamie Maguire & Thomas Papouin & Leon Reijmers, 2020. "Experience-dependent resonance in amygdalo-cortical circuits supports fear memory retrieval following extinction," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    6. Wei-Zhu Liu & Wen-Hua Zhang & Zhi-Heng Zheng & Jia-Xin Zou & Xiao-Xuan Liu & Shou-He Huang & Wen-Jie You & Ye He & Jun-Yu Zhang & Xiao-Dong Wang & Bing-Xing Pan, 2020. "Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    7. Wulf Haubensak & Prabhat S. Kunwar & Haijiang Cai & Stephane Ciocchi & Nicholas R. Wall & Ravikumar Ponnusamy & Jonathan Biag & Hong-Wei Dong & Karl Deisseroth & Edward M. Callaway & Michael S. Fansel, 2010. "Genetic dissection of an amygdala microcircuit that gates conditioned fear," Nature, Nature, vol. 468(7321), pages 270-276, November.
    8. Yusuke Iino & Takeshi Sawada & Kenji Yamaguchi & Mio Tajiri & Shin Ishii & Haruo Kasai & Sho Yagishita, 2020. "Dopamine D2 receptors in discrimination learning and spine enlargement," Nature, Nature, vol. 579(7800), pages 555-560, March.
    9. Guilin Pi & Di Gao & Dongqin Wu & Yali Wang & Huiyang Lei & Wenbo Zeng & Yang Gao & Huiling Yu & Rui Xiong & Tao Jiang & Shihong Li & Xin Wang & Jing Guo & Si Zhang & Taoyuan Yin & Ting He & Dan Ke & , 2020. "Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    10. Patricia H. Janak & Kay M. Tye, 2015. "From circuits to behaviour in the amygdala," Nature, Nature, vol. 517(7534), pages 284-292, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren-Wen Han & Zi-Yi Zhang & Chen Jiao & Ze-Yu Hu & Bing-Xing Pan, 2024. "Synergism between two BLA-to-BNST pathways for appropriate expression of anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Qi Wang & Jia-Jie Zhu & Lizhao Wang & Yan-Peng Kan & Yan-Mei Liu & Yan-Jiao Wu & Xue Gu & Xin Yi & Ze-Jie Lin & Qin Wang & Jian-Fei Lu & Qin Jiang & Ying Li & Ming-Gang Liu & Nan-Jie Xu & Michael X. Z, 2022. "Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Xin Fu & Eric Teboul & Grant L. Weiss & Pantelis Antonoudiou & Chandrashekhar D. Borkar & Jonathan P. Fadok & Jamie Maguire & Jeffrey G. Tasker, 2022. "Gq neuromodulation of BLA parvalbumin interneurons induces burst firing and mediates fear-associated network and behavioral state transition in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Anna J. Bowen & Y. Waterlily Huang & Jane Y. Chen & Jordan L. Pauli & Carlos A. Campos & Richard D. Palmiter, 2023. "Topographic representation of current and future threats in the mouse nociceptive amygdala," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Sorinel A Oprisan & Xandre Clementsmith & Tamas Tompa & Antonieta Lavin, 2019. "Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-39, October.
    7. Léa J. Becker & Clémentine Fillinger & Robin Waegaert & Sarah H. Journée & Pierre Hener & Beyza Ayazgok & Muris Humo & Meltem Karatas & Maxime Thouaye & Mithil Gaikwad & Laetitia Degiorgis & Marie des, 2023. "The basolateral amygdala-anterior cingulate pathway contributes to depression-like behaviors and comorbidity with chronic pain behaviors in male mice," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    8. Mariusz Mucha & Anna E. Skrzypiec & Jaison B. Kolenchery & Valentina Brambilla & Satyam Patel & Alberto Labrador-Ramos & Lucja Kudla & Kathryn Murrall & Nathan Skene & Violetta Dymicka-Piekarska & Aga, 2023. "miR-483-5p offsets functional and behavioural effects of stress in male mice through synapse-targeted repression of Pgap2 in the basolateral amygdala," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. In-Jee You & Yeeun Bae & Alec R. Beck & Sora Shin, 2023. "Lateral hypothalamic proenkephalin neurons drive threat-induced overeating associated with a negative emotional state," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Yosuke Yawata & Yu Shikano & Jun Ogasawara & Kenichi Makino & Tetsuhiko Kashima & Keiko Ihara & Airi Yoshimoto & Shota Morikawa & Sho Yagishita & Kenji F. Tanaka & Yuji Ikegaya, 2023. "Mesolimbic dopamine release precedes actively sought aversive stimuli in mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Sindy Cole & Rick Richardson & Gavan P McNally, 2013. "Ventral Hippocampal Kappa Opioid Receptors Mediate the Renewal of Fear following Extinction in the Rat," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-7, May.
    12. Rodrigo Ordoñez Sierra & Lizeth Katherine Pedraza & Lívia Barcsai & Andrea Pejin & Qun Li & Gábor Kozák & Yuichi Takeuchi & Anett J. Nagy & Magor L. Lőrincz & Orrin Devinsky & György Buzsáki & Antal B, 2023. "Closed-loop brain stimulation augments fear extinction in male rats," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. In Bum Lee & Eugene Lee & Na-Eun Han & Marko Slavuj & Jeong Wook Hwang & Ahrim Lee & Taeyoung Sun & Yehwan Jeong & Ja-Hyun Baik & Jae-Yong Park & Se-Young Choi & Jeehyun Kwag & Bong-June Yoon, 2024. "Persistent enhancement of basolateral amygdala-dorsomedial striatum synapses causes compulsive-like behaviors in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Jing-Jing Yan & Xiao-Jing Ding & Ting He & Ai-Xiao Chen & Wen Zhang & Zi-Xian Yu & Xin-Yu Cheng & Chuan-Yao Wei & Qiao-Dan Hu & Xiao-Yao Liu & Yan-Li Zhang & Mengge He & Zhi-Yong Xie & Xi Zha & Chun X, 2022. "A circuit from the ventral subiculum to anterior hypothalamic nucleus GABAergic neurons essential for anxiety-like behavioral avoidance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Qingtao Sun & Jianping Zhang & Anan Li & Mei Yao & Guangcai Liu & Siqi Chen & Yue Luo & Zhi Wang & Hui Gong & Xiangning Li & Qingming Luo, 2022. "Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    16. C. Nicolas & A. Ju & Y. Wu & H. Eldirdiri & S. Delcasso & Y. Couderc & C. Fornari & A. Mitra & L. Supiot & A. Vérité & M. Masson & S. Rodriguez-Rozada & D. Jacky & J. S. Wiegert & A. Beyeler, 2023. "Linking emotional valence and anxiety in a mouse insula-amygdala circuit," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Masahiro Sawada & Ralph Adolphs & Brian J. Dlouhy & Rick L. Jenison & Ariane E. Rhone & Christopher K. Kovach & Jeremy, D. W. Greenlee & Matthew A. Howard III & Hiroyuki Oya, 2022. "Mapping effective connectivity of human amygdala subdivisions with intracranial stimulation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Gayane Aghakhanyan & Paolo Bonanni & Giovanna Randazzo & Sara Nappi & Federica Tessarotto & Lara De Martin & Francesca Frijia & Daniele De Marchi & Francesco De Masi & Beate Kuppers & Francesco Lombar, 2016. "From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    19. Lahti, Tom & Halko, Marja-Liisa & Karagozoglu, Necmi & Wincent, Joakim, 2019. "Why and how do founding entrepreneurs bond with their ventures? Neural correlates of entrepreneurial and parental bonding," Journal of Business Venturing, Elsevier, vol. 34(2), pages 368-388.
    20. Candela Sánchez-Bellot & Rawan AlSubaie & Karyna Mishchanchuk & Ryan W. S. Wee & Andrew F. MacAskill, 2022. "Two opposing hippocampus to prefrontal cortex pathways for the control of approach and avoidance behaviour," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33139-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.